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CHAPTER 1. INTRODUCTION AND SUMMARY 
 

Distributed Generators (DGs) are usually small and modular generation units located near the 

customers. Their generation power ranges from a few kilowatts to several megawatts (generally 

below 10 megawatts). It includes mainly combustion engines with liquid or gaseous fuel, micro 

turbine, solar power (photovoltaic power and solarthermal power), wind power, biomass power, 

fuel cell and so on. 

 

With enhanced awareness of energy conservation, emission reduction and environmental protection, 

DGs have been increasingly employed in modern power systems, especially in distribution systems. 

DGs can not only reduce energy losses, delay the expansion of transmission systems and hence 

investment, but can also enhance the security and stability of the power system concerned, improve 

voltage quality, increase energy utilization and reduce pollution emission.  

 

However, if the siting and sizing of DGs are not properly determined, these advantages cannot be 

fully exploited. With this in mind, it is the objective of this report to systematically address the 

siting and sizing issues of DG, and to evaluate the greenhouse gas abatement effect. 

 

In addition to the current chapter, the following seven chapters will be presented, followed by 

concluding remarks. 

Chapter 2: Sizing the distributed generation with life cycle costing and greenhouse gas 

abatement effects 

Chapter 3: Radial basis function neural network based short-term wind power forecasting with 

Grubbs test 

Chapter 4: Optimal siting and sizing of distributed generators based on a modified primal-dual 

interior point algorithm 

Chapter 5: Optimal siting and sizing of distributed generators in distribution systems with plug-

in electric vehicles 

Chapter 6: A hybrid approach for planning distributed generation employing chance 

constrained programming 

Chapter 7: Risk control in transmission system planning with wind generators 

Chapter 8: Generation scheduling with fluctuating wind power 

 

A brief introduction of the next seven chapters (Chapters 2-8) is given below. 
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1. Sizing the distributed generation with life cycle costing and greenhouse gas abatement effects 

 

Modern distribution networks operate with distributed generation, of which wind and PV can be 

primary technologies. With the recent developments, they share a considerable amount of loads 

compared to other DG technologies that may exist in a typical distribution network. Optimal 

planning algorithms are required to determine the type of generating technology to use, the machine 

ratings that will satisfy the demand and enable the system to be operated at minimal cost under 

constrained operating conditions.  

 

A software program was developed and scripted using IPLAN programming language to work in 

conjunction with PSS/E software. The algorithms corresponding to the software development is 

presented in chapter 2. 

 

A set of scenarios were developed and the most economical combinations of hybrid generating 

units, their performance, and individual merits with regard to objectives of this part of the project 

were investigated. The results suggest that the best possible combinations of various DGs such as 

wind and PV systems can be operated with critical supports of diesel units as supplement to the grid 

power supply. 

 

Case studies presented are referring to constant cost factors of generating technologies and assets. 

However, the software program is developed to incorporate varying costs of generating 

technologies and assets that may have arisen through the inflation and life cycle effects. Such 

facilities in the software enables incorporation of the varying cost components of PV, wind etc, as 

well as the futuristic cost elements that may have arisen through subsidiaries given by governments 

for the use of particular generation technologies.  

 

The investigations further suggest that the wind and diesel generating unit combination gives the 

most economical power generation for the particular network considered for the assessment, 

followed by wind, PV, diesel, and PV and diesel combinations. 

 

The proposed algorithm gives not only the size of DG system and geographical location but also the 

operating condition of the week that determines the optimal condition. Such information is useful in 

reducing computation time of extended applications that include the security of energy supply to 

consumers by DG and the reliability improvement with DG unit combinations.  

 

The priority ranking of LCC and GHG emission can be used by network regulators and policy 

makers for setting incentives or penalising those who adversely affect the environment. It also 

facilitates benchmarking distribution networks for the incentives as appropriate. The results coming 

out of the program can also be used as a potential platform for the carbon trade and extended 

applications. On the other hand, distribution network operators can use the proposed methodology 

to balance the benefits between different types of DG combinations and overall benefits of reducing 

LCC and GHG emission. Such an approach is necessary in meeting renewable energy targets and 

balancing the economy verses carbon trade. 
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2. Radial basis function neural network based short-term wind power forecasting with Grubbs test 

 

Great efforts have been engaged in the implementation of renewable energy programs around the 

globe because of global warming and the deficiency of fossil fuel energy. In particular, the 

utilization of wind power, one of the main renewable energy resources, has experienced rapid 

development in recent decades. Wind power, however, comes the obvious disadvantages of 

intermittence and uncertainty which could significantly increase the difficulty of power system 

dispatching. The ever-increasing size, number and capacity of wind farms has brought the power 

industry the challenge of ensuring the secure and stable operation of power systems. Accurate 

forecasting of wind power generation plays an important role in power system dispatching and wind 

farm operation. 

 

ANN has the ability to discover and approximate the nonlinear relationship through learning. The 

ANN based forecasting of wind speed and wind power has become a popular research focus in 

recent years. At present, Back Propagation (BP) neural networks and local feedback neural 

networks are usually employed. Based on the gradient descent rule, the BP algorithm is a local 

optimization algorithm. Many studies have revealed that the Radial Basis Function (RBF) neural 

network can achieve higher approximating accuracy, avoid being trapped in local minima, and has a 

faster learning curve. Furthermore, the RBF neural network, while having a simple structure, has 

strong capabilities of extrapolation and non-linear mapping between input and output.  

 

Wind power forecasting can be classified as long-term, mid-term, short-term, or ultra short-term 

based on duration. In chapter 3, a RBF neural network based forecasting model is developed based 

on the wind speed, temperature, and historical wind generator outputs. The Grubbs Test is 

employed to check exceptional data. Prediction is conducted using the 2009 actual yearly data from 

a wind farm in Guangdong, China. The prediction achieved high accuracy with the prediction error 

below 10% most of the time. The simulation shows that the exceptional data must be eliminated in 

wind power forecasting in order to achieve higher precision of prediction. 

 

3. Optimal siting and sizing of distributed generators based on a modified primal-dual interior point 

algorithm 

 

As mentioned before, the advantages of DGs can be fully exploited if the siting and sizing of DGs 

are properly optimized. Inappropriate siting and sizing of DGs could even lead to an increase in 

network losses and a decrease of voltage quality at some buses.  

 

Given this background, in chapter 4, a simple and practical approach for determining the suitable 

siting of DGs is first developed based on the loss sensitivity on every bus voltage. It can effectively 

reduce the solution space to a few buses. Secondly, after determining the optimal siting, the 

MPDIPA is employed to determine the sizing of DGs with the objective of optimizing the voltage 

profile at every bus. The modified equations of the Primal-Dual Interior Point Algorithm are then 

simplified to speed up the calculation procedure. IEEE 123-node test feeder is employed to verify 

the effectiveness of the proposed method. The results demonstrate that the proposed approach is 
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able to search for the optimal solutions quickly. At the same time, the voltage profiles are obviously 

improved and the network loss is decreased dramatically. 

 

4. Optimal siting and sizing of distributed generators in distribution systems with plug-in electric 

vehicles 

 

Due to the increasing penetration of DGs in distribution systems, the siting and sizing of DGs in 

distribution system planning is becoming increasingly important. Inappropriate siting and sizing of 

DGs could lead to many negative effects on the distribution systems concerned, such as the relay 

system configurations, voltage profiles and network losses. Another issue is that more and more 

attention is being paid to the applications of plug-in electric vehicles (PEV). However, some 

uncertainties such as the stochastic output power of a PEV due to its random charging and 

discharging schedule, that of a wind power unit due to the frequently variable wind speed, and that 

of a solar generating source due to the stochastic illumination intensity, volatile fuel prices and 

future uncertain load growth could lead to some risks in determining the optimal siting and sizing of 

DGs in distribution system planning. Hence, the optimal siting and sizing of DGs need to be 

carefully considered in distribution system planning.  

 

In Chapter 5, for the simplicity of presentation, the load power of a PEV in the charging condition is 

regarded as the negative output power of the PEV and negative input power to the system 

concerned. Therefore, the load power of a PEV in both charging and discharging conditions is 

called the ―output power‖ of the PEV. Moreover, the PEV is regarded as a kind of DG with 

stochastic output power. 

 

Under the chance constrained programming framework, a new mathematical model is developed to 

handle some uncertainties such as the stochastic output power of a PEV, that of a renewable DG, 

that of a solar generating source, volatile fuel prices used by a fueled DG and future uncertain load 

growth in the optimal siting and sizing of DGs. Then, a Monte Carlo simulation embedded genetic 

algorithm approach is presented to solve the developed CCP model. Finally, the test results of the 

IEEE 37-node test feeder demonstrate the feasibility and effectiveness of the developed model and 

method. 

 

5. A hybrid approach for planning distributed generation employing chance constrained 

programming 

 

Siting and sizing of renewable energy distributed generation into existing distribution systems is 

essential to ensure the best benefits achievable from such resources while maintaining the secure 

and reliable operation of the distribution systems.  

 

In this chapter, a novel planning methodology, based on chance constrained programming (CCP), 

has been proposed for optimally planning RE-DG into the distribution systems so as to maximize 

the benefits. In this chapter, the RE-DG planning problem is formulated as a stochastic optimization 

problem subject to security limitations as chance constraints. The model to be developed could not 
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only to yield the maximum benefits, but also maintain the performance of system under an 

uncertain environment. A new methodology is developed to evaluate the reliability of distribution 

systems with embedded RE-DGs, in which the intentional islanding operation of distribution grids 

in some cases is taken as an important way to improve system reliability and reduce outages. Based 

on the developed model and approach, the IEEE 37-node test system is employed to verify the 

effectiveness, and test results have demonstrated that the voltage profile and power flow can be 

significantly improved and the cost from loss of supply substantially reduced. 

 

6. Risk control in transmission system planning with wind generators 

 

Although wind power is clean and renewable, wind farms can bring about significant unfavorable 

impacts on power systems due to their stochastic, intermittent and uncontrollable characteristics. 

With the expansion of wind power generation and thus the increasing quota of wind energy in 

power systems, these adverse influences could become technical barriers to wind power integration, 

resulting in new challenges to transmission system planning (TSP) and operation. To address these 

challenges, new approaches should be applied in TSP to facilitate the integration of wind energy 

through increasing the power system‘s ability to defend against the influence. 

 

To overcome the shortcomings discussed above, chapter 7 presents a probabilistic model for the 

power output of wind generators. The DC probabilistic power flow is calculated with the combined 

use of cumulants and Gram-Charlier series. Three risk-controlling strategies are then introduced to 

enhance the system‘s defense against security risks in allusion to the uncertain factors in TSP: 

probability of not violating each branch power flow limit (PBL), probability of not violating system 

power flow limit (PSL), probability for the security margin of system power flow (PSM). 

 

Based on the above work, a TSP model with risk-controlling strategies is developed for a power 

system containing wind generators. A cost-benefit method is utilized to evaluate the planning 

schemes in order to maximize the overall benefit. 

 

Two case studies demonstrate that it is possible to achieve a good trade-off among the security, 

reliability and economics of TSP schemes by employing risk-controlling strategies. Consequently, 

the security risks of a system associated with the uncertainties due to wind generators can be 

controlled using the developed TSP model. 

 

7. Generation Scheduling with Fluctuating Wind Power 

 

Current generation scheduling cannot fully integrate the most essential features of non-dispatchable 

generation technologies like wind power. This limitation is becoming an issue for grid operators as 

there is more and more public and political pressure to increase the penetration of renewable 

generation technologies, which depend on randomly varying weather conditions. Existing 

generation scheduling is however generally based on deterministic models and usually ignores the 

likelihood and the potential consequences of the random contingencies. Because of this limitation, 
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this chapter proposes a generation scheduling suitable for fluctuating wind power, which is also 

applicable to other renewable power generation.  

 

There are two methods of incorporating the wind power into unit commitment. One is to take into 

account the wind power as a constant. In other words, the wind power can be forecast without 

errors. The other one is the stochastic approach. The two strategies are presented as follows. 

Uncertainties are observed in wind power generation, and a stochastic approach is most suitable for 

the modelling of generation. It is natural to apply a stochastic approach to a deterministic problem 

in the solution process.  

 

In chapter 8, a stochastic optimization approach is proposed for the unit commitment problem 

considering the uncertainty of wind power generation, based on the mixed-integer linear 

programming (MILP). The problem is formulated as minimizing the total cost of thermal units. To 

consider wind power generation, scenarios are generated using scenario generation techniques. The 

stochastic problem is hence transformed to a deterministic one. 

 

A 10-unit system and 100-unit system are employed to demonstrate the proposed model and 

method. It is shown by the simulation results that the expected scheduling cost by using stochastic 

programming is generally more than that using the deterministic model. This is because the 

stochastic model took into account the situation that the thermal units cannot meet the prediction 

error caused by the variation of wind power in time. Hence, the ramping capabilities of units and 

prediction accuracy of wind power are crucial when wind power varies. 
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CHAPTER 2. SIZING THE DISTRIBUTED GENERATION WITH LIFE 

CYCLE COSTING AND GREENHOUSE GAS ABATEMENT EFFECTS 
 

1. Background 

 

The assessment techniques and distributed generation (DG) technologies are significantly 

advancing with the increase in large scale and dispersed integration of DG. This evokes the need of 

a generic network that can be used as a common platform to assess the performance of techniques 

and DG technologies. It also provides researchers the platform for comparing alternative methods 

and further advances the solutions. 

 

There are distribution networks which are well designed to absorb additional capacity of distributed 

generation. One must see research problems within a problem in order to understand and investigate 

solutions. In that context, use of robust distribution network models may not be always the right 

platform to assess the merits of DG. On the other hand, there are networks that inherit serious 

operating issues. They are either not suitable for the assessment of DG technologies or assessment 

techniques. This is because they may give pessimistic conclusions due to the unusual weakness of 

the network. Therefore, it is obvious that the right balance is necessary in order to test any 

technique or technologies. The reason being that if the assessment platform is significantly different 

from majority of distribution networks, the research conclusion comes through the investigation 

may not be a fair conclusion for DG techniques and their benefits to distribution networks.  

 

The above facts demonstrate the need for a network that can fairly assess the characteristics of DG 

technologies and performance of techniques that are aimed at assessing the benefits of DG. 

Therefore, this report proposes a test network that is designed based on the concepts of realistic 

distribution networks. The network is stable under normal operating conditions and without the 

presence of distributed generation. 

 

Modern distribution networks operate with distributed generation of which the wind and PV 

(Alderfer et al., 2000) can be primary technologies. With the recent developments, they share a 

considerable amount of loads compared to other DG technologies that may exist in a typical 

distribution network. The output of some of the renewable power generation technologies including 

Wind and PV varies throughout the year; however their output can be dispatched with the support 

of energy storage technologies. The optimum, efficient, and economical operation of renewable and 

new generation technologies requires the use of smart devices which would enables the smart 

coordination of DGs. Such an arrangement would reduce the use of fossil fuelled DGs such as 
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diesel units or in other words they may able to operate only when they are economical in the 

operating cycle. 

 

There are algorithms in the published literature for investigating optimal generating unit 

combinations however they are mostly confined to single bus systems where the hybrid generation 

technologies are connected. The optimal planning algorithm requires determining the type of 

generating technology to use, the machine ratings that will satisfy the demand and to operate the 

system at minimum cost under constrained operating conditions (Inglis et al., 2010, Pan et al., 

2009). The literature suggests that there are three main types of algorithms that can be used to solve 

a planning problem: constructive heuristic algorithms, conventional optimization algorithms and 

combinatorial algorithms (Romero et al., 1996, Gallego et al., 1998, Lavorato et al., 2009). They 

further highlights that the utilization of robust and efficient linear programming algorithms is vital 

parts in realising the tasks within the problem. Heuristic and conventional optimization algorithms 

as presented in (Garver, 1970), and are used to solve the linear programming (LP) problems 

associated with the optimisation. The LP algorithm provides a less complex method to formulate 

the problem and ensures that fast and efficient solutions to the problem with large systems. The LP 

algorithms consider all the specific characteristics of the problem and they incorporate various 

constraints associated with the optimal planning of the electrical system and its auxiliaries.  

 

The determination of costs is an integral part of the feasibility study and design of any power 

system. In the past, comparisons of different generation technology alternatives, whether at the 

conceptual or detailed design stage, was based mainly on initial capital costs. In order to achieve 

better outcomes from assets, ongoing operation and maintenance costs must be considered as they 

consume more resources over the asset‘s service life cycle. Life Cycle Costing (LCC) is a process 

to determine the sum of all the costs associated with an asset or part thereof, including acquisition, 

installation, operation and maintenance, refurbishment, and disposal costs. 

 

Life cycle costing adds together all the costs of alternatives over their life period and enables an 

evaluation on a common basis for the period of interest usually using discounted costs considering 

inflation. This enables decisions on acquisition, maintenance, refurbishment or disposal to be made 

in light of full cost implications. Life cycle cost can be calculated during any or all phases of an 

asset's life cycle. It can be used to provide input to decisions regarding asset design, manufacture 

states, installation, operation, support and disposal. Early identification of acquisition and 

ownership costs enables the decision-maker to balance performance, reliability, maintainability, 

maintenance support, and other goals against life cycle cost. Fig 2.1 shows an example of life cycle 

costing of a generating unit. 
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Fig 2.1 Life Cycle Cost phases of a generating unit (Modified from (Taylor, June 2003) ) 

 

One of the environmentally hazardous outputs of conventional power generating units is the 

greenhouse gasses. Greenhouse gases are those gaseous constituents of the atmosphere, both natural 

and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of 

thermal infrared radiation emitted by the Earth‘s surface, the atmosphere itself, and by clouds. This 

property causes the greenhouse effect. Water vapour (H2O), carbon dioxide (CO2), nitrous oxide 

(N2O), methane (CH4) and ozone (O3) are the primary greenhouse gases in the Earth‘s atmosphere 

(Wikipedia, 2000b). 

 

According to the data provided on green house gas emissions by sector (Wikipedia, 2000a), the 

largest contributor towards the green house gas emission is the power industry and is responsible 

for highest percentage of carbon dioxide gas emissions. Such effects can be minimised with the 

integration of large-scale renewable distributed generation into power systems. Renewable power 

integration requires an adequate evaluation in order to  assess the environmental impacts and 

economics of the overall production and utilization life cycle, including the construction and 

operation stages of renewable plants (Mikhail Granovskii et al., May 2006). For every kilowatt-hour 

of electricity produced, a proportion of CO2 is emitted to the atmosphere, which is known as 

Greenhouse coefficient. For example, one kilowatt-hour of electricity produced by burning brown 

coal will emit approximately one kilogram of CO2 into the atmosphere. The Australian Greenhouse 

Office annually determines each State's Greenhouse coefficient, based on their respective sources of 

electricity generation. The highest greenhouse coefficient in Australia was found in Victoria with a 
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value of 1.39 and this value is used as the basis to predict the worst case scenario (Emission 

Statement, 2010). 

 

2. The test network 

 

The proposed test network consists of 49 busses, 52 feeders, 25 transformers, 13 load points, 3 

diesel units, 2 wind farms, and 1 PV farm with a total active and reactive peak load of 42MW, 

6MVAr respectively. The network is developed in such way that it would operate healthy under 

normal operating conditions. 

 

Fig. 2.2 shows the schematic diagram of the network. It is divided into three zones – Zone A, Zone 

B, and Zone C. One of the aims of zoning is to facilitate islanding and grid connected modes of 

studies. User need to provide the control mechanism that will prevent unintentional islanding. The 

added benefit of zoning is that the user can test the feasibility of mini/micro-grid associated 

research as well as issues of inter-connection of mini/micro-grids. User can also test the feasibility 

of the operation of a distribution network with the operation of distribution network autonomous 

controllers. 

 

The detailed technical data associated with each of the zones A, B and C are given in detail in 

(Jayaweera et al., November 2010). It also provides various test case scenarios and details of the 

voltage and thermal loading distribution for the network. Under the normal operating conditions the 

network is steady state stable and there is no voltage limit ( 6 %) or thermal limit violations exist. 
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Fig 2.2 Schematic diagram of the proposed test network 
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3. The developed methodology 

Inputs

Network Testing

Hour Based Generation

 Capacity Determination

Minimum Loss Configuration

Optimal Generation Capacity 

Determination using LCC and/or 

GHG emission levels for 25 year 

project life

Optimum size of DG

 

Fig 2.3 Overview of the generation size optimisation algorithm with LCC and GHG 

 

Fig 2.3 shows the methodology used to determine the optimal DG sizes including diesels with life 

cycle costs (LCC) and green house gas (GHG) emissions over 25 years. The algorithm is divided 

into four sections namely Phase A, Phase B, Phase C, and Phase D2. Phases A, B, and C are as 

explained in (Jayaweera et al., March 2011). The details for Phase D2 are given in (Jayaweera et al., 

June 2011). 

 

Phase A of the algorithm involves data inputs and the verification of the network base case 

(Jayaweera et al., November 2010) for network constraint violations. Upon entering the data, the 

network feasibility is checked by applying the Newton-Raphson algorithm. If the network 

converges for the operating condition without violating any constraints the operating state is 

deemed feasible. On successful convergence of the network, the program proceeds to Phase B of 

the algorithm.  

 

Phase A 

Phase B 

Phase C 

Phase D2 

From 

 

 (Jayaweera et al., 

March 2011) 

From  

 

(Jayaweera et al., 

June 2011) 
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In phase B, the most economical combination of DG units in the system including diesel units that 

best match the load and DG generation profile, for each hour of the year is determined. If it satisfies 

all the constraints, then the combination is saved and the operating costs associated with it is 

calculated and stored against the combination. On completion of the Phase B, the DG unit 

combination with the least operating costs is inputted to the next phase.  

 

Phase C of the algorithm is used to determine how best the generation is allocated in such a way 

that the DG unit combination produces least amount of power losses. This is obtained by calculating 

the sensitivity of alteration of each DG unit capacity combination to reduce power losses of the 

network. 

 

In phase D2, the total LCC and GHG emission are calculated and the final results for the 

investigation is given as output. The diesel generators are operated only if they operate within the 

economical (efficient) region. The algorithm treats 40% to 100% of the rated output power of a 

diesel unit as the economic region of the efficiency curve.  

 

The number of years of the project is flexible and in this investigation is set to 25 years. The 

investment cost includes the capital cost per MW for each unit, procurement and design costs, and 

installation costs respectively. The maximum ratings of the units are used for investment cost 

calculation. Depending on the life of the individual units in the system, replacement or renewal 

costs for the units are to be considered for the LCC calculation. The replacement can occur more 

than once within the 25 year period of the assessment. The disposal cost is included within the 

replacement cost.  

 

Using the total generated power associated with each unit, the yearly costs associated with the 

operation and maintenance, energy/fuel costs, and cost of power losses can be calculated. This 

calculation assumes that the load profiles and magnitudes remain the same for the entire 25 year 

period. This facilitates simplified calculations neglecting the costs for network restructuring and 

reduces the computation time that is necessary for each year. Even though these elements are not 

incorporated, they can be embedded as an extension to the algorithm. 

 

The cost of energy losses for the system is calculated assuming that all the energy lost in the 

network is supplied by the diesel generators. That is, diesel generators are assumed to generate the 

extra power required to meet the power loses of the network.  

In this study, three options are offered to determine the optimal DG unit combination. 

 Option 1 selects the optimal combination of DGs that includes diesels according to the total 

LCC for the whole period considered for the assessment (25 years). 
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 Option 2 considers the DG unit combination with the least GHG emission and therefore 

provides the best environmentally friendly generation of power. 

 Option 3 is used to arrive at an output that is both economical and environmentally friendly. 

This is done by ranking the full array of combinations. First ranking set is determined based on 

the total LCC of combinations. Second ranking set is determined based on GHG emitting level 

of the combinations. Then, the priority ranking sets are combined together with weighting 

factors and the DG unit combination with the lowest value out of the combined rank considered 

as the most beneficial and economical combination for the power network. In this investigation, 

equal weighting factors are assumed with the objective of giving equal importance to reduce 

LCC and GHG emissions. 

 

4. The Software Development 

 

The algorithm proposed before is scripted using the PSS/E version 32 based IPLAN programming. 

IPLAN modules can be created through any text editing software and has the ability to interact with 

PSS/E software to produce the desired outcome. IPLAN programs interrogate the PSS/E via various 

routines and control the execution of inbuilt commands in the PSS/E via a series of PUSH 

commands. The values entered for the PUSH commands appear to the host application if they were 

entered from the terminal.  It can access the whole information and data from the PSS/E software 

and can use the same to perform complex analytical and logical calculations to produce output 

values that can be fed back to the software. 

 

PSS/E has a large collection of application program interface commands that can be used to input 

various types of data to execute different types of power flow calculation, create output reports etc. 

These commands can be either given at the program input terminal or can be given as inline 

commands using the IPLAN software enabling the seamless integration of the user defined 

subroutines with the actual inbuilt functions present in the PSS/E software package. 

 

More details on IPLAN programming is given in (Jayaweera et al., March 2011), (Jayaweera et al., 

June 2011) and (Siemens Energy, March 2009). 
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5. Case studies 

5.1 Impacts of load variation effects 

 

The network loading is varied in percentage steps to determine the optimal size of generators taking 

into account network constraints, total life cycle costs, power losses. Fig. 2.4 shows the total 

installed capacities of operating conditions corresponding to weekly based scenarios in a sample 

year. The vertical axis gives the total installed capacities (MW) the wind, PV and diesel generators 

that will provide the minimum total life cycle costs, while the horizontal axis provides the 

combinations corresponding to each week calculated during the Phase B. 

 

Fig 2.4 Total installed capacities of generating technologies needed to meet weekly operating 

conditions with base case loading  

 

Each of the generating unit size corresponding to each week is fed into Phase C and thereafter 

Phase D of the algorithm in achieving the goals.  

Installed capacity of the generating unit given at the week 47 gives the most economical 

combination that can fulfil all the operating condition of the year. This is highlighted in Fig 2.4. 

Thus, the week 47 is representative for selecting the least cost of operation scenario and provides 

the added benefit of optimal combination of distributed generating units. Identification of such an 

operating condition is infeasible without the application of exhaustive algorithms because of 

simultaneous variation of several factors through the simulation period.  
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Fig 2.5 shows the total installed capacity of most economic generating unit combination of all 

studies. Load at 90% of the base case load gives the largest required installed capacity to meet the 

operating conditions of the selected year. This is because the wind units of this scenario provide 

more power than other generating units. Network constraints and loading level together with 

physics of power flow limit injecting power from the generating stations that results higher demand 

from wind units resulting an increase in installed capacity. At 90% of full load, the penetration of 

Wind and PV is more than that was for the full load condition. This can be attributed to greater 

relaxation available in the network voltage limit and thermal limit constraints and indicates that the 

network mostly absorbs wind energy. 

 

However, loading from 30% to 80% of the base load follows a linear variation of total installed 

capacity which contributes to most economical configuration. 

 

Once the base case loading is increased above 100%, the most economic combination demands 

more power from diesel units, resulting in a reduced penetration level of wind power. This situation 

arises because the extra capital cost of wind units is not economical with larger installed capacities 

demanded by increased loading levels to meet a safe operating condition of the network. The 

network operation is infeasible beyond 130% of base load due to network constraints. 

 

Fig 2.5 Sum of the generating unit sizes vs. variation in system load 
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5.2 Life cycle costs 

 

Fig 2.6 shows the LCC incurred for the wind, PV and diesel generators for different DG unit 

combinations of the project for 25years. The total load demand for the 25 years is assumed as 

constant throughout. A depreciation rate of 7 % is used to calculate the net present value of the 

costs for each year in dollars. Results suggest that the week corresponding to the critical operating 

condition that determines the optimal DG size is not affected throughout and it remains at the 47
th

 

week. 

 

Fig 2.6 LCC for different DG unit combinations in 25 years 

 

5.3 The GHG abatement 

 

The green house gas abatement algorithm proposed in section 3 and (Jayaweera et al., June 2011) 

was incorporated into the LCC subroutine as an addition to investigate the environmental impacts 

for different DG unit combinations. Upon successful testing of the software, a series of studies were 

performed to verify the effectiveness of the three options given in the algorithm under Phase D2 in 

section 3. 
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Fig 2.7 gives the green house gas emission in equivalent of CO2 weight in tonnes for the 25 year 

study period. Results show that the DG unit combination corresponding to week 29 has the least 

GHG emission. Therefore, the operating condition at week 29 is the one that determines the most 

beneficial DG unit combination and size based on GHG. 

 

Fig 2.7 GHG emission for 25 year project life 

 

 

Fig 2.8 Total LCC for 25 year project life 

Fig 2.8 shows the ascending order of ranking of various DG unit combinations taking into account 

GHG emission. The best rank (or the lowest position in the ascending order of ranks) results due to 

the operating condition at the 29
th

 week.  Fig 2.9 shows the ranking based on the LCC values. The 

results given in Fig 2.7and 2.8 are used to derive the combined priority list to determine the most 

favourable DG unit combination taking into account both GHG emission and LCC costs.  
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Fig 2.9 GHG based ranking 

 

 

Fig 2.10 LCC based ranking 
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Fig 2.11 Equally weighted ranking based on both GHG and LCC 

 

The ranks based on both GHG and LCC shown in Fig 2.11 is used to determine the best 

combination. Fig. 2.11 also shows that the optimal DG unit combination corresponds to 41
st
 week; 

however it is not the best combination if either of the LCC and GHG was decoupled and treated 

individually. Of the two best combinations, week 47 has a better ranking with LCC consideration 

than week 29 with GHG priority. Detailed observations also suggest that the DG unit combination 

results through week 41 operating condition has a lower load share by diesel units and much higher 

load share by wind penetration.  This results a better GHG ranking (lowest in the order) even 

though the LCC ranking is lower than week 47 resulting DG unit combination. 

5.4 The GHG variation with combinations 

 

The pie-chart presented in Fig 2.12 shows the summary of the variation in total LCC associated 

with the system when combinations of generation technologies were varied to supply the same load 

demand. The most economical combination was found to be that of a hybrid system with diesel and 

wind units. This combination offers 12% less cost than diesel, wind, and PV unit combination. The 

results further suggest that the wind-diesel operation is 22% more economical than that of PV-diesel 

operation for the test network considered for the assessment. 
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Fig 2.12 LCC Cost–benefit analysis with different DG technologies 

 

 

 

Fig 2.13 LCC and GHG emission variation with generating unit combinations 

Fig 2.13 shows the summarised LCC and GHG emission cost variations in the context of diesel/PV, 

diesel/Wind, and diesel/Wind/PV operations. The bar charts in blue, red and green gives the total 

LCC corresponding to the optimal DG combination based only on LCC, based only on GHG, and 
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considering LCC and GHG with equal weighting factors respectively. The results in Fig. 2.13 

suggest that the operating condition at the week 41 is the most critical operating condition in terms 

of determining the distributed generating unit combination that provides most benefits in terms of 

reducing LCC and GHG emissions for the test network considered for the assessment. 

 

The case studies presented in this report refer to constant cost factors of generating technologies and 

assets. However, the software program facilitates incorporation of cost of different makes and ages 

of DG technologies in the formulation. Such facilities in the software enable to incorporate varying 

cost components of PV, wind and other DG technologies in addition to the futuristic cost elements 

that may arise through governmental subsidiaries and taxes set by governments for the sustainable 

energy future. 

 

6. Conclusions 

 

A test network is presented for the assessment of DG technologies and assessment techniques 

(Jayaweera et al., November 2010). Report presents technical data of the entire network component 

that are required for steady state analysis, time series characteristics of load, and the time series 

characteristics of wind and PV generation. The test network is designed in such a way that it is 

healthy under normal operating conditions. The proposed network is that it can be used to compare 

different techniques and to generalise techniques. Time series characteristics of wind and PV can be 

used to quantify average effects of intermittent technology performance and to identify hidden 

effects that can trigger significant impacts to the network operation. The technical data given in the 

report is for the steady state analysis. However, the users have the option to include transient and 

dynamic data of the equipment as necessary for their studies. 

 

An algorithm is proposed for the calculation of the life cycle cost and green house gas abatement 

through the optimisation subroutines proposed in (Jayaweera et al., March 2011) and (Jayaweera et 

al., June 2011). The algorithm determines the most economical and environmentally friendly hybrid 

DG unit combination that can be accommodated to an active distribution network. The algorithm 

offers the most beneficial distributed generation unit mix and their capacities respective to the 

geographical location of the system. The software program was developed and scripting the 

algorithm using IPLAN subroutines to work in conjunction with PSS®E software (Siemens, June 

2009). The program facilitates to differentiate the LCC benefits, GHG emission levels, and 

combined effects. Such options are vital in trading off the business objectives of distributed energy 

business. 

 

A set of case studies are performed to investigate the specific features of the test system (Jayaweera 

et al., November 2010). The results conclude that the optimal DG size can be affected by not only 
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the constraints of the power system but also the greenhouse gas effects if a designer concerns 

overall benefits. For the particular network considered for the study shows that  the best DG system 

and sizes are achieved through the operating condition of the 47
th

 week if the network constraints 

and LCC is considered whereas combine effects of greenhouse gas emission effects, aging life of 

equipment, and network constraints moves the critical operating condition of the week to 29th 

week. In other words, week 29
th

 operating condition determines the most beneficial DG system and 

the size for the network if those constraints are considered. 

 

The application of the proposed weighting approach suggest that with equal weightings, the best 

DG system and the unit sizes results by the operating condition of 41
st 

week. The case studies also 

show the vulnerability for sizes of DG and the type in balancing the LCC and greenhouse gas 

emission in an active distribution network. Thus, network planner needs putting extra effort in 

applying the balanced approach for global system benefits. Such approaches not only improve the 

network performance, but also reduce adverse impacts on the environment.  

 

The most economical DG system of the network used for the assessment is the Wind and diesel 

system. This system offers 12% less cost than the system with diesel, wind, and PV units. The 

results further suggest that the wind-diesel operation is 22% economical than that of PV-diesel 

operation for the network. 

 

The results conclude that the operating condition at the week 41 is the most critical operating 

condition in terms of determining generating unit combination that provides most benefits in terms 

of LCC and GHG emission for the test network.  

 

The proposed algorithm gives not only the size of DG system and geographical location but also the 

operating condition of the week that determines the optimal condition. Such information is useful in 

reducing computation time of extended applications that include the security of energy supply to 

consumers by DG and the reliability improvement with DG unit combinations.  

 

The importance priority ranking of LCC and GHG emission can be used by network regulators and 

policy makers for setting incentives or penalise those who adversely affects the environment. It also 

facilitates benchmarking distribution networks for the incentives as appropriate. The results comes 

out of the program can also be used as a potential platform for the carbon trade and extended 

applications. On the other hand, distribution network operators can use the proposed methodology 

to balance the benefits between different types of DG combinations and overall benefits of reducing 

LCC and GHG emission. Such an approach is necessary in meeting renewable energy targets and 

balancing the economy verses carbon trade. 
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CHAPTER 3. RADIAL BASIS FUNCTION NEURAL NETWORK 

BASED SHORT-TERM WIND POWER FORECASTING WITH 

GRUBBS TEST 

  

Accurate prediction in wind power generation plays an important role in power system dispatching 

and wind farm operation. The Radial Basis Function (RBF) neural network, owing to its superior 

performance of linear/nonlinear algorithm with respect to fast convergence and accurate prediction, 

is very suitable for wind power forecasting. Based on the historical data from a wind farm 

composing of wind speed, environmental temperature, and power generation, the authors develop a 

short-term wind power prediction model for one-hour-ahead forecasting using a RBF neural 

network. Due to the existence of incorrect values in the original data, the Grubbs test is conducted 

to pre-process the samples. In the case study, the forecasting results are compared with the actual 

wind power outputs. The simulation shows that the presented method can provide accurate and 

stable forecasting.  

 

1. Introduction 

Great global efforts have been engaged in the implementation of renewable energy programs 

because of global warming and the deficiency of fossil fuel energy. Particularly, the utilization of 

wind power, one of the main renewable energy resources, has experienced rapid development in 

recent decades [Lei Ya-zhou, 2003]. Wind power, however, has obvious disadvantages of 

intermittence and uncertainty which could largely increase the difficulty of system dispatching. The 

ever-increasing size, number and capacity of wind farms has brought utility industry a challenge to 

ensure secure and stable operation of power systems. Accurate forecast of wind power generation 

plays an important role in power system dispatching and wind farm operation. 

 

Although research activities have been widely carried out in the field of power generation in China 

and abroad, the prediction of wind power output is far from satisfactory and the prediction accuracy 

should be considerably improved to reach an acceptable level. The proposed prediction methods so 

far include statistic analysis [Y. Cancino-Solorzano and J. Xiberta-Bernat, 2009; J.A. Roney, 2007; 

M.C. Alexiadis et al, 1998], Kalman filter [P. Louka et al, 2008], time series analysis [Kamal L and 

Jafri Y Z, 1997; Z. Huang et al, 1995], Artificial Neural Networks (ANN) [Li Shuhui, 2003; 

M.Bilgili et al, 2007; T. Senjyu et al, 2006; T.G. Barbounis and J.B. Theocharis, 2006; Bei Chen et 

al, 2009; AlexiadiS M et al, 1998; T.G. Barbounis and J.B. Theocharis, 2007], Fuzzy Logic [T.G. 

Barbounis and J.B. Theocharis, 2007; Ioannis G. Damousis, 2004], and spatial correlation [T.G. 

Barbounis and J.B. Theocharis, 2007; Ioannis G. Damousis, 2004; M. C. Alexiadis et al, 1999].  

 

ANN has the ability to discover and approximate the nonlinear relationship through learning. ANN 

based prediction of wind speed and wind power has become a popular research focus in recent 
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years. At present, BP (Back Propagation) neural networks and local feedback neural networks are 

usually adopted. Based on the gradient descent rule, the BP algorithm is a local optimization 

algorithm. Many studies have revealed that the Radial Basis Function (RBF) neural network can 

achieve higher approximating accuracy, avoid being trapped in local minima, and has a faster 

learning curve. Furthermore, the RBF neural network, while with simple structure, has strong 

capability of extrapolation and non-linear mapping between input and output.  

 

According to the duration, wind power prediction can be classified as long-term, mid-term, short-

term, or ultra short-term forecast. This chapter focuses upon the Short-term forecasting. With the 

data from a wind farm in Guangdong, China, the wind power is predicted in short-term by the 

developed RBF neural network and the prediction results are compared against the real 

measurements. 

 

2. RBF neural network 

 

The RBF Neural Network, due to the advantages addressed in the introduction, is very suitable for 

non-linear time series prediction, such as in wind power forecasting. 

 

2.1 RBF Neural Network 

 

RBF neural network is a forward network. As shown in Fig 3.1, the structure of RBF neural 

network is composed of the input, the hidden and the output layer. The function of the input layer is 

to transmit signals. The parameters of the activation function, which is a Green or a Gauss Function, 

are regulated by the hidden layer, where the nonlinear optimization strategy is used. Linear weights 

are adjusted by the output layer, and in general the linear optimization strategy is adopted.   
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Fig 3.1 RBF Neural Network Structure 
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2.2 Learning Algorithm of RBF Network  

There are three parameters to be solved in the RBF neural network learning algorithm. They are the 

center of the base function, the mean square deviation, and the weights from the hidden layer to the 

output layer. The common radial basis function is a Gauss function in the RBF neural network. 

Thus the activation function can be expressed as 
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           (1) 
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 is the Euclidean norm, c and  are respectively the center and the mean square 

deviation of the Gauss function.  

 

From the structure of the RBF neural network, the output of the network is given as 
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 j=1,2, ,n        (2) 
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 is the connection weights from the hidden layer 

to the output layer, i=1,2, ,h is the number of hidden layer nodes, and No
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 is the real output of the 

j-th output node corresponding to the input sample.  

 

Suppose d is the expected output. Then the mean square deviation of base function should be 
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3. Construction of the RBF model  

 

3.1 Selection of data sample 

An asynchronous wind generator with a unit capacity of 600kW from a wind farm in Guangdong is 

selected in the case study for short term power output prediction. In the case study, only the daily 

period is considered. The wind speed in a wind farm is a nonlinear function influenced by many 

factors, with the wind speed being the primary one to determine the wind power generation. 

Another factor affecting the power output is the air density, which in turn is affected by the 

temperature. Because the wind engine has its own Yaw system and it can implement yawing 

automatically, the influence of the wind direction is not considered. Through analyzing the 

operation of the wind generator in the case study, the power output within the preceding time 

duration, the environmental temperature, and the wind speed of the succeeding time duration are 

selected as the input of training samples.  

3.2 Sample Data Pre-processing 

Some incorrect data are found by comparing and analyzing the original data, which include normal 

or abnormal outage data of wind turbine, fault data of wind instruments for wind turbine, and so on. 

These incorrect original data need to be pre-processed to reduce the prediction error. 

 

In the work, the Grubbs Test is adopted to eliminate the exceptional data that are identified by 
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 is the critical 

value of Grubbs test determined by the test number n and the given sample significance level , s is 
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values are listed in 

Table I. 

Table 3.1 Critical Value 
,n

 of Grubbs Test 

n 
Significance level 

0.05 0.01 

100 3.210 3.600 

200 3.432 3.822 

300 3.552 3.938 

500 3.695 4.075 

800 3.820 4.193 

1000 3.877 4.247 
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Fig 3.2 shows the sample data after the pre-processing. After eliminating the exceptional values, the 

copied data is more stable than the original one.  
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Fig 3.2 Sample data after pre-processing 

 

3.3 Normalization of the samples 

 

For most practical problems, there are many input parameters with the dimension and the order of 

magnitude of each input varying in a wide range. Furthermore, the systems involved are usually 

nonlinear. When the learning is conducted in a region far from zero, the learning speed could be 

very slow or even not converged. Therefore, normalization of the samples is necessary, such as that 

done in our project of wind power forecasting, where the input data are mapped to [-1,1]. After 

training, the outputs are inversely renormalized into the original data range. 

3.4 RBF Network Model  
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Training network works as follows. 
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4. Prediction results and analysis 

 

To demonstrate the performance of the developed predicted model, the sample data in 2009 is 

selected from the wind farm in Guangdong. The power output one-hour ahead is predicted using the 

developed model. The average data in each 12 minutes in an hour is recorded so that 5 data sets are 

obtained in each hour. During the modelling procedure, the data in the past 24 hours are selected as 

the training samples for carrying out the prediction with the predicted curve shown in Fig 3.3. 

 

The effectiveness of the predicted model is verified quantitatively by the relative percentage error 

(RPE) and the mean absolute percentage error (MAPE) given by the following equations: 
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 is the observed power value, and N is the number of 

predicted data. 

 



 40 

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Time /h

P
o

w
er

 /
k

W

 

 

RBF Predicted BP Predicted Actual Data

 

Fig 3.3 The result of wind power forecasting after 1h 

 

The RPE diagram is shown in Fig 3.4, which is the contiguous one-hour wind power prediction in 

96 hours. It is seen from the diagram that the number of one-hour prediction with error less than 

20% is 82, i.e., 85% of the total prediction. The study on the prediction results shows that the other 

15% prediction with large errors (>20%) is mainly caused by the fault data. The MAPEs of next 

hour wind power prediction in contiguous 24 hours, 48 hours, 72hours, and 96 hours are calculated 

separately (Table 3.2). In general, the prediction error is below 10%.  
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Fig 3.4 The RPE of wind power forecast after 1h using RBF Neural Network 

 

The prediction results using the RBF neural network and the back-propagation (BP) neural network 

are compared in Table 2. The RBF neural network achieved significantly more accurate results, 

with the MAPE 7.12% for 24 hours, 7.30% for 48 hours, 8.97% for 72 hours, and 10.06% for 96 

hours, all much lower than that of the BP network. Compared with some other existing methods, the 
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RBF neural network prediction also has better performance [YANG Xiu-yuan et al, 2005]. Another 

observation is that the prediction error increases along with the increase of the prediction hours. 

 

Table 3.2 Comparison of MAPE among different forecast hours between RBF and BP Neural 

Network Predictions  

Predicting hours RBF BP 

24 7.12 12.97 

48 7.30 16.73 

72 8.97 20.83 

96 10.06 23.84 

 

5. Conclusions 

 

A RBF neural network based prediction model is developed based on the wind speed, temperature, 

and historical wind generator outputs. Prediction is conducted using the real 2009 annual data from 

a wind farm in Guangdong, China. The prediction achieved high accuracy with the prediction error 

below 10% most of the time. The simulation shows that the exceptional data must be eliminated in 

wind power forecasting in order to achieve higher precision of prediction. 
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CHAPTER 4. OPTIMAL SITING AND SIZING OF DISTRIBUTED 

GENERATORS BASED ON A MODIFIED PRIMAL-DUAL INTERIOR 

POINT ALGORITHM 

 

With the enhanced awareness of energy-saving, emission-reduction and environmental protection, 

distributed generators (DGs) have been increasingly employed in modern power systems, especially 

in distribution systems. DG can not only reduce energy losses, delay the expansion of transmission 

systems and hence the investment, but also enhance the security and stability of the power system 

concerned, improve voltage quality, increase energy utilization and reduce pollution emission.  

 

However, these advantages can be fully explored if the siting and sizing of DGs are properly 

optimized. Inappropriate siting and sizing of DGs could even lead to the increase in network losses 

and the drop of voltage quality at some buses. Given this background, a sensitivity based approach 

is presented to identify the optimal siting of DGs. On the other hand, the optimal sizing of DGs is 

determined by the Modified Primal-Dual Interior Point Algorithm (MPDIPA) with an objective of 

maintaining the voltage profile at the optimal level. IEEE 123-node test feeder is employed to verify 

the effectiveness of the proposed method. The results demonstrate that the proposed approach is 

able to search for the optimal solutions quickly. At the same time, the voltage profiles are obviously 

improved and the network loss is decreased dramatically. 

 

1. Introduction 

 

At present, an increasing number of researchers in the power system area have realized that the 

traditional models of the power system—the centralized generation, long-distance power 

transmission and interconnection among large-area power networks could result in many 

increasingly prominent drawbacks. This is especially true when an accident occurs in some part of 

the power system; it will lead to a large area outage and a negative impact on the normal daily life 

of people, and even the safety and stability of social orders. If the power system which is 

interconnected with each other collapses, it will cause much more inestimable losses and 

consequences. The traditional model of power systems cannot meet the requirements in modern 

times. With the rise in promotion towards the utilization and exploitation of renewable energy 

sources, DG has been extensively applied in power systems due to its advantages, namely flexible 

operation, security and reliability, as well as environmental protection. 

 

DG is usually a kind of small, modular, efficient and reliable generation units located near the 

customers [Wang Chengshan et al, 2006]. Its generation power ranges from a few kilowatts to 

several megawatts (generally below 10 megawatts). It mainly includes combustion engine with the 
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fuel of liquid or gas, micro turbine, solar power (photovoltaic power and photothermal power), 

wind power, biomass power and fuel cell etc. Combined with the traditional model, DG is playing 

an increasingly important and positive role in decreasing network losses, reducing electricity price, 

maintaining environmental and economical benefits, reducing the investment in generation capacity 

and delaying the upgrade of the transmission system. However, if the siting and sizing of DGs are 

not properly determined, these advantages cannot be fully explored. 

 

Given this background, in recent years many researchers have done much work on this subject. In 

[N. Acharya et al, 2006], an efficient and analytical approach is developed for DG allocation in 

primary distribution networks with the objective of minimizing network losses. However, this 

approach may sometimes fail to find the global optimal solution. In [M. Gandomkar et al, 2005], an 

algorithm combining the Genetic and Tabu Search approaches is presented for DG allocation in 

radial distribution networks. The calculation results of a simple and small system indicate that this 

algorithm is better than genetic algorithm based approach. In [D. Singh, and K.S. Verma, 2005], a 

genetic algorithm based approach is employed for the siting and sizing of DG from the perspective 

of a generation company. With the objective of minimizing the energy cost or generation cost 

respectively, this approach optimizes time-varying voltages and loads. 

 

In this chapter, a simple and practical approach for determining the suitable siting of DGs is 

developed based on the loss sensitivity on every bus voltage. It can effectively reduce the solution 

space to a few buses. Secondly, after determining the optimal siting, the MPDIPA is employed to 

determine the sizing of DGs with the objective of optimizing the voltage profile at every bus. The 

modified equations of the Primal-Dual Interior Point Algorithm are next simplified for speeding up 

the calculation procedure. 

 

2. The optimal siting of DGs 

 

The siting of DGs has an impact on the security and reliability, as well as the economic operation of 

the power system concerned. The solution space of the problem of optimizing the DG siting will 

dramatically expand as the bus number increases [Wang Zhiqun et al, 2005]. In order to maximize 

the benefits from DG, the optimal siting should be determined first. In this section, a practical 

method called the loss sensitivity on every bus voltage is developed. 
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2.1 The Loss Sensitivity on Every Bus Voltage 

 

The polar form of real power flow equations in the Newton-Laphson method (N-R) can be 

formulated as 
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The total loss of the distribution network studied can be expressed as 
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Therefore, the loss sensitivity on every bus voltage can be obtained as 
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2.2 The Steps of Implementation 

 

Using the results from the power flow calculation, the loss sensitivity on every bus voltage can first 

be evaluated. According to the values, the buses are ranked in ascending order. If the loss sensitivity 

on some bus voltage is the smallest one (less than zero) and the voltage at this bus is lower than the 

reference voltage, then increasing the voltage of this bus will lead to the decrease of the network 

loss to the greatest extent. Finally, this bus can be determined as the optimal siting of DGs. 
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3. The optimal sizing of DGs 

 

After the optimal siting of DGs is carried out, the MPDIPA is employed to determine the optimal 

sizing of DGs concerned. Due to some simplifications are made to the modified equations, the 

calculation procedure of this approach is sped up. 

3.1 The Objective Function 

The objective function for the optimal sizing of DGs is to optimize the voltage profile at every bus 

in the distribution network. The mathematical model can be formulated as follows: 
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is the reference voltage. 

 

Some work has been done to employ the multi-objective optimization technique to solve the 

optimal sizing problem of DGs [G. Celli et al, 2005]. The advantages of this kind of methods are 

that several objectives can be optimized and realized at the same time. However, it is difficult to 

balance weightings among these objective functions. Here, a method combining the loss sensitivity 

on every bus voltage and the single objective function is employed in this chapter. 

 

3.2 The Equality Constraints 

 

The equality constraints corresponding to both active and reactive power balance equations are 

formulated as follows: 
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K=K+1

Judge the convergence conditions

and
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

are the active and reactive power output of the DG at bus No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions  respectively; 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

and
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

are the active and reactive power of the load at bus No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions  respectively. 
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3.3 The Inequality Constraints 

 

The inequality constraints considered here mainly include the upper limits of active and reactive 

power outputs of the DGs, the upper and lower limits of the voltage amplitude at every bus and the 

maximum permitted power flow in any feeder in the distribution network for respecting the thermal 

capacity limit: 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

     (6) 

 

Where: 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the number of DGs. 

 

4. The MPDIPA for optimizing the sizing of DGs 

 

The principles of the MPDIPA can be mathematically formulated as 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

      (7) 

 

Where: 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the objective function; 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the set of the equality constraints; 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the set of the 

inequality constraints; No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the vector of the state variables. 

 

4.1 The Lagrange Function 

 

The MPDIPA employed here first transforms all inequality constraints in (7) into equalities by 

adding non-negative variables. Then, the non-negative conditions of slack variables are handled by 

incorporating them into logarithmic barrier terms; finally, a Lagrange function is built as follows by 

incorporating equalities into the objective function of (7): 
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No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

   (8) 

 

Where: 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

; 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

and
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

are the slack variables; 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

are the Lagrange multipliers; 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is 

the barrier factor. 

 

4.2 The Simplification of the Modified Equations 

 

First, the Lagrange function (8) must satisfy the Karush-Kuhn-Tucker (KKT) optimality conditions 

[Yu-chi Wu et al, 1994]. Therefore, the optimal search direction is solved by the Newton‘s method 

and the following matrix can then be obtained: 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

   (9) 

Where: 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

. 

 

From the above descriptions, it is obvious that the calculation amount of this method mainly lies in 

the modified (9). If (9) is calculated directly, much calculation time and computer memory will be 

wasted. To solve this problem, a method for the improvement of the modified equations is proposed 

here. The details of its realization are as follows: 

 

First, (9) can be written as follows: 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

   (10) 
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Simplifying the third and fourth items of (10): 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

     (11) 

 

Substituting the first and second items of (11) into the first and second items in (10) yields 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

    (12) 

 

Substituting the second item of (12) into the fifth item of (11) yields 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

   (13) 

 

Combining the first item of (13) with the sixth item of (10), the simplified matrix of the modified 

equations could be obtained as follows: 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

                          (14) 

 

Where: No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions and No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions can be calculated by (14). Then, No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions , No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions , No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions and No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions can be calculated by (11) and 

(12). Therefore, the calculation time can be reduced. 

 

4.3 The Dual Gap, Centering Parameter and Barrier Parameter 

 

The relational expression between the barrier parameter and the complementarity gap is as follows 

[F. Capitanescu et al, 2007]: 
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No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

     (15) 

 

Where: 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the dual gap; 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the centering parameter 

and 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the number of inequality constraints. 

 

4.4 The Iteration Step 

 

In the iteration procedure, the step length should be modified so as to guarantee the primal 

feasibility and dual feasibility of solutions. Meanwhile, to enhance the convergence speed, different 

kinds of variables employ different step lengths in this chapter. The step lengths are mathematically 

expressed as follows: 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

   (16) 

Where: 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the step length of primal variables; 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the step length of dual variables; 
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

is the 

safety factor. 

 

The primal and dual variables can be modified according to the step length and optimal search 

direction. Then, the starting points of the next iteration are determined by: 

 

No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

    (17) 

 

4.5 The Convergence Conditions 

 

The convergence conditions of the MPDIPA must include the complementarity, primal feasibility, 

dual feasibility and optimality [Xihui Yan and V.H. Quintana, 1996]. Therefore, it can be expressed 

as follows in the form of inequality constraints: 
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No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

      (18) 

 

Where:
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

,
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

and
No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

are constants. 

 

4.6 The Computational Procedure 

 

Step 1: Set the iteration counter No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions and specify the starting points. 

 

Step 2: According to (15), determine the barrier parameter No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions , dual gap No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions and centering 

parameter No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions . 

 

Step 3: According to (14), (11) and (12), calculate the search directions of every variable. 

 

Step 4: According to (16), determine the step length of primal variables and dual variables. 

 

Step 5: According to (17), update the primal variables and dual variables. 

 

Step 6: According to (18), judge whether the convergence condition is met. If yes, stop the 

calculation and output the results; otherwise, set the iteration counter No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions , and then return to 

step 2. 

 

The computational procedure is shown in Fig 4.1: 
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No

Yes

Choose the proper starting points

Determine the dual gap, centering parameter and barrier parameter

Obtain the optimal search direction by the modified equations

Modified the primal and dual variables

Modified the primal and dual variables

Output the results

K=K+1

Judge the convergence conditions

 

Fig 4.1 The computational procedure of the MPDIPA 

 

5. Case studies 

 

The IEEE 123-node test feeder [IEEE Distribution System Analysis Subcommittee, 2004], as 

shown in Fig 4.2, is used for testing the proposed method. In this test case, the states of three phase 

switches are shown in Table I. Suppose that the power of the load is constant, and the reference 

voltage is 1.00. In the environment of Visual C++ 6.0, a program is developed. 

 

1

3

4

5 6

2

7 8

12

11
14

10

20
19

22

21

18
35

37

40

135

33

32

31

27

26

25

28

29
30

250

48
47

49
50

51

44

45

46

42

43

41

36
38

39

66

65
64

63

62

60
160 67

57
58

59

5453
52

55
56

13

34

15

16

17

96

95

94

93

152

92
90 88

91 89
87 86

80

81

82
83

84

78

8572

73

74

75

77

79

300

111 110

108

109 107

112 113 114

105

106

101

102

103

104

450

100

97

99

68

69

70

71

197

151

150

61 610

 9

24

23

251

195

451

149

350

76

98

76

 

Fig 4.2 The diagram of the IEEE 123-node test feeder 

 

Table 4.1 The states of three phase switches 
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Node A Node B Normal 

13 152 closed 

18 135 closed 

60 160 closed 

61 610 closed 

97 197 closed 

150 149 closed 

250 251 open 

450 451 open 

54 94 open 

151 300 open 

 

First, the values of the loss sensitivity on every bus voltage are shown in Fig 4.3. It is obvious that 

the voltages at nodes 60, 37, 57 and 42 have great impacts on the network losses, and the values 

associated are listed in Table II. Therefore, if these four node voltages rise, the network losses will 

decrease dramatically. Therefore, the buses of 60, 37, 57 and 42 are the optimal sitings of DGs. 
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Fig 4.3 The loss sensitivity on the bus voltage in the IEEE 123-node test feeder 

 

Table 4.2 The loss sensitivity on the bus voltage of the four buses in the IEEE 123-node test feeder 

Bus Bus voltage The loss sensitivity on bus voltage 

60 0.988 -0.160281 

36 0.9951 -0.149043 

57 0.9945 -0.141629 

42 0.9929 -0.0773531 
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After the optimal siting of DGs is carried out, the MPDIPA is used to determine the sizing of DGs. 

The optimal siting and sizing of DGs are shown in Table III. From Fig 4.4, Fig 4.5 and Fig 4.6, it 

can be observed that the voltage profile at every bus has been greatly improved and the network 

loss also has been decreased dramatically. Moreover, every bus voltage concentrates on the 

reference voltage after the optimization. 

 

Table 4.3 The siting and sizing of DGs after the optimization 

The 

siting of 

DGs 

The reactive 

power of 

DGs/KW 

The real 

power of 

DGs/KVar 

The network 

loss without 

DGs/KW 

The network 

loss with 

DGs/KW 

Iteration 

(times) 

60 65.37 43.21 

50.54 20.13 0.93 
36 34.75 15.83 

57 12.17 8.52 

42 31.43 22.92 

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Iteration (times)

P
o

w
e
r 

lo
ss

 (
K

W
)

 

Fig 4.4 The variations of the network loss in the iteration process 
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Fig 4.5 The voltage at every bus in the IEEE 123-node test feeder without DGs 
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Fig 4.6 The voltage at every bus in the IEEE 123-node test feeder with DGs 

 

It is an important sign of the MPDIM convergence that the dual gap tends to zero [G.L. Torres and 

V.H. Quintana, 1998]. The graph as shown in Fig 4.6 indicates that the dual gap tends to zero 

during the iteration process. This illustrates that the proposed algorithm has reliable convergence 

characteristics. 
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Fig 4.7 The dual gap in each iteration 
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6. Conclusions 

 

In this chapter, a new approach combining the loss sensitivity on every bus voltage with the 

MPDIPA is presented for optimizing the siting and sizing of DGs. The former is used for the 

optimal siting of DGs so as to reduce the calculation time and optimization scale. The latter is used 

for the optimal sizing of DGs. Test results of the IEEE 123-node test feeder demonstrate that the 

developed method can determine the siting and sizing of DGs optimally, and as a result, the voltage 

profile can be significantly improved and the network loss obviously reduced. 
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CHAPTER 5. OPTIMAL SITING AND SIZING OF DISTRIBUTED 

GENERATORS IN DISTRIBUTION SYSTEMS WITH PLUG-IN 

ELECTRIC VEHICLES 

 

With the ever-increasing deployment of distributed generators (DGs) in modern power systems, the 

siting and sizing of DGs are becoming increasingly important in distribution system planning. 

Inappropriate siting and sizing of DGs could lead to many negative effects on the distribution 

systems concerned, such as the relay system configurations, voltage profiles and network losses. 

Another issue is that the rapid development of electric vehicles has imposed new challenges to 

power system planning and operation control. Some uncertainties such as the uncertain output 

power of a plug-in electric vehicle (PEV) due to its stochastic charging and discharging schedule, 

that of a wind generation unit due to stochastic wind speed, and that of a solar generating source 

due to the stochastic illumination intensity, volatile fuel prices and future uncertain load growth, 

could lead to some risk in determining the optimal siting and sizing of DGs in distribution systems. 

Given this background, under the chance constrained programming (CCP) framework, a new 

method is presented to handle these uncertainties in the optimal siting and sizing of DGs. First, a 

mathematical model of CCP is developed with the minimization of DGs‘ investment cost, operating 

cost and maintenance cost as well as the network loss cost as the objective, security limitations as 

constraints, the siting and sizing of DGs as optimization variables. Then, a Monte Carlo simulation 

embedded genetic algorithm based approach is developed to solve the developed CCP model. 

Finally, the IEEE 37-node test feeder is employed to verify the feasibility and effectiveness of the 

developed model and method, and test results have demonstrated that the voltage profile can be 

significantly improved and the network loss substantially reduced. 

 

1. Introduction 

 

With the progressing exhaustion of fossil energy, the limitation of available transmission corridors 

and the gradual increase in the global temperature, rapid development of Distributed Generators 

(DGs) has been observed around the world. Although the employment of DGs is helpful for 

postponing transmission investment, reducing primary energy consumption, decreasing the 

emission of greenhouse gases and hence alleviating global warming, the extensive penetration of 

DGs could lead to some risks to the secure and economic operation of power systems. 

 

Due to the increasing penetration of DGs in distribution systems, the siting and sizing of DGs in 

distribution system planning is becoming increasingly important. Inappropriate siting and sizing of 

DGs could lead to many negative effects on the distribution systems concerned, such as the relay 

system configurations, voltage profiles and network losses. Another issue is more and more 

attention is being paid to the applications of plug-in electric vehicle (PEV) [S. Rahman, and G. B. 
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Shrestha, 1993; K. Clement-Nyns et al, 2010; P. Mitra and G. K. Venayagamoorthy, 2010]. 

However, some uncertainties such as the stochastic output power of a PEV due to its random 

charging and discharging schedule [P. T. Staats et al, 1997; J. G. Vlachogiannis, 2009; M. Etezadi-

Amoli et al, 2010], that of a wind power unit due to the frequently variable wind speed, and that of 

a solar generating source due to the stochastic illumination intensity, volatile fuel prices and future 

uncertain load growth could lead to some risk in determining the optimal siting and sizing of DGs 

in distribution systems [M. R. Haghifam et al, 2008; D. Zhu et al, 2006]. Hence, the optimal siting 

and sizing of DGs need to be carefully considered in distribution system planning. In this chapter, 

for the simplicity of presentation, the load power of a PEV in the charging condition is regarded as 

the negative output power of the PEV and negative input power to the system concerned. Therefore, 

the load power of a PEV in both charging and discharging conditions is called ―output power‖ of 

the PEV. Moreover, the PEV is regarded as a kind of DG with stochastic output power. 

 

The objective of the distribution system planning with DGs considered is to find an optimal 

combination of a capacity expansion scheme such as the new feeders to be built, the expanded 

capacity of the substation, and the siting and sizing of DGs so as to minimize/maximize a given 

objective function, with the load growth constraints and some security constraints well respected 

[W El-Khattam et al, 2005]. 

 

At present, a large number of research publications are available on the subject of the optimal siting 

and sizing of DGs [C. S. Wang, and M. H. Nehrir, 2004; G. Carpinelli et al, 2005; A. Keane and M. 

O‘Malley, 2005; K. H. Kim et al, 2008; R. K. Singh and S. K. Goswami, 2009; M. M. Elnashar et 

al, 2010; D. Gautam and N. Mithulananthan, 2007; S. Ghosh et al, 2010; T. Gözel and M. H. 

Hocaoglu, 2009]. However, most of them are based on deterministic methods. For example, in [C. 

S. Wang, and M. H. Nehrir, 2004], analytical methods are presented to determine the optimal 

location of a DG in radial as well as networked systems with the minimization of the network loss 

as the objective; in [K. H. Kim et al, 2008], the fuzzy goal programming is employed to determine 

the optimal placement of DGs for loss reduction and voltage improvement in distribution systems. 

A simple yet conventional iterative search technique is combined with the Newton-Raphson load 

flow method for finding the optimal sizing and placement of DGs in [S. Ghosh et al, 2010], and the 

modified IEEE 6-bus, IEEE 14-bus and IEEE 30-bus test systems are employed to demonstrate the 

developed method. In [T. Gözel and M. H. Hocaoglu, 2009], an equivalent current injection based 

loss sensitivity factor is used to determine the optimal locations and sizes of DGs by an analytical 

method with the minimization of the total power losses as the objective. A new approach is 

proposed in [M. M. Elnashar et al, 2010] to optimally determine the locations and sizes of DGs in a 

large mesh-connected system. Three indexes including the losses, voltage profile and short circuit 

level are used to determine the optimal locations and sizes of DGs. In these papers, some 

deterministic mathematical models are employed to formulate the optimal siting and sizing of DGs, 
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and generally the mathematical models such obtained are mixed-integer nonlinear programming 

ones with multiple variables and constraints included. 

 

As already mentioned before, there are some uncertainties associated with the optimal siting and 

sizing of DGs in distribution system planning. Given this background, under the CCP framework, a 

new method is presented to handle the risks brought by these uncertainties in the optimal siting and 

sizing of DGs. First, a mathematical model of CCP is developed with the minimization of DGs‘ 

investment cost, operating cost and maintenance cost as well as the network loss cost as the 

objective, security limitations as constraints, the siting and sizing of DGs as optimization variables. 

Then, a Monte Carlo simulation embedded Genetic Algorithm approach is developed to solve the 

developed CCP model. Finally, the IEEE 37-node test feeder is employed to verify the feasibility 

and effectiveness of the developed model and method, and test results have demonstrated that the 

voltage profile can be significantly improved and the network loss substantially reduced. 

 

The major components of the CCP based optimal siting and sizing of DGs in distribution system 

planning are outlined in Fig 5.1, and details associated will be clarified in the following sections. 

 

Mathematical Model

Optimization Constraints

Security of Distribution Systems

Optimization Variables 

Optimal Sitting and Sizing of DGs

Fuel Price

Output Power of  

a Wind Unit

Output Power of  a  

Solar Generating 

Source

Uncertainties

(Represented by Probability Distribution Functions)

Future

Load Growth

Chance Constrained Programming 

(CCP) 

Investment Cost

Maintaince Cost

Objective Function

Operation Cost

+ +

Weibull Distribution

Geometric Brownian Motion

Normal  Distribution





min

+

(Monte Carlo Simulation  + Genetic Algorithm)

Network Loss Cost

Output Power 

of  a PEV

+

 

Fig 5.1 The flowchart of the developed CCP based method for optimal siting and sizing of DGs in 

Distribution Systems 
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2. Chance Constrained Programming 

 

As a branch of stochastic programming methods, CCP can accommodate constraints with stochastic 

variables included, and makes decisions before stochastic variables are actually observed [N. Yang 

and F. S. Wen, 2005a]. Moreover, CCP allows that the decision-making procedure does not satisfy 

some constraints, but must satisfy the constraints with a given probability, i.e., the so-called 

confidence interval. 

 

The general form of a CCP problem can be described as 

 

. .

Pr ( , )

Pr ( , ) 0 ( 1,2, , )j

min f

s t

f X f

g X j n

     (1) 

 

Where: 

 X is a k-dimension decision-making vector; 

 is a set of stochastic variables with known probability distributions; 

 ( , ) 0 ( 1, 2, , )
j

g X j n  are stochastic constraints; 

 ( , )f X is the objective function; 

 f is the optimal value of the objective function with the given confidence interval ; 

 and are both the given confidence intervals; 

 Pr{} represents the probability of the event included in{} . 

 

A constraint represented by the probabilistic form is called a chance constraint. More details about 

CCP can be found in [N. Yang and F. S. Wen, 2005b] and [B. Liu, 1999]. 

 

3. Modeling of Uncertainties 

3.1 The Output Power Uncertainty of PEVs  

 

According to the charging-discharging characteristics of the PEV‘s battery, the recently established 

Vehicle to Grid (V2G) technology can make the battery release the stored electrical energy in peak 

load periods for mitigating the power supply shortage and absorb the electrical energy in off-peak 

especially valley periods so as to smoothing the load curve. Moreover, the negative effects of 

intermittent DGs such as wind units and solar generating sources on the secure and economic 

operation of power systems can be alleviated if the charging and discharging of PEVs could be 
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properly scheduled. To make the full use of the above advantages and reduce the impacts of the 

stochastic charging and discharging schedules of PEVs on power systems, a centralized dispatching 

mechanism for charging and discharging of PEVs could be very helpful. 

 

Some recent simulation experiments have demonstrated that the output power of a PEV in the 

charging or discharging conditions approximately follows the normal distribution [J. H. Zhao et al, 

2010]. Thus, in off-peak load periods, the output power of a charging PEV could be described as 

2
( , )( ) ~ ( ) ( )v v vNP t t t ; in peak load periods, the output power of a discharging PEV could be 

described as 2( ) ~ ( ( ), ( ))v v vP t N t t . 

 

3.2 The Output Power Uncertainty of Wind Generating Units 

 

A large number of experiments have demonstrated that the stochastic wind speed in most regions 

approximately follows the Weibull distribution, and this conclusion is employed in this chapter. 

Suppose that the stochastic wind speed v  follows a Weibull distribution ( , )k c with the probability 

density function [A. E. Fijoo et al, 1999]: 

 

 

( 1) ( / )
( ) 0

k

kk v ck
f v v e v

c
     (2) 

 

Where: k  and c  are respectively the shape index and the scale index of the Weibull distribution. 

When the mean value of the wind speed samples in a given region is known, the scale index could 

be calculated by employing the following equation, 

 

2

0 0

2
( / )

2

2
( )

2
m

v cv
v vf v dv e dv c

c
      (3) 

 

Thus, the shape index of the Weibull distribution curve can be obtained as
2

mc v . 

 

Based on the known probability distribution function of the wind speed, the relationship between 

the output power of a wind generating unit and the wind speed can be formulated as [Y. M. Atwa et 

al, 2008]: 
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_
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( )

( )
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v v

P v v v

    (4) 

 

Where: 

 v is the wind speed at hub high of the wind unit; 

 
ci

v is the cut-in wind speed; 

 
co

v is the cut-out wind speed; 

 
r

v is the rated wind speed; 

 
_w rated

P is the rated output power of the wind unit. 

 

Thus, the relationship between the output power of a wind unit and the wind speed at hub high 

could be shown as Fig 5.2.  

 

civ
rv cov

/(kW)wP

_w ratedP

1( )/v m s0
 

Fig 5.2 The relationship between a wind unit‘s output power and the wind speed 

 

3.3 The Output Power Uncertainty of Solar Generating Sources 

 

The output power of a solar generating source is affected by many factors such as the spectral 

distribution of the solar energy, the temperature of solar cells, and the illumination intensity. The 

illumination intensity is usually considered to be the dominant one [N. Mutoh et al, 2002]. To 

facilitate the presentation, only the relationship between the illumination intensity and the output 

power of the solar generating source is given here. 
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Suppose that the stochastic illumination intensity follows the Weibull distribution ( , )s sk c . 

Whereby, k and c are determined by the history data in the local area associated. Thus, suppose that 

the relationship between the illumination intensity and the output power of a solar generating source 

can be described as [N. Mutoh et al, 2002] 

 

_

_

0
s rated r

s rated r

rs

P s s

P s s

s

sP      (5) 

Where: 

 s is the illumination intensity; 

 
r

s is the rated value; 

 
_s rated

P is the rated output power of the solar cells. 

 

Thus, the relationship between the output power of a solar generating source and the illumination 

intensity could be shown as Fig 5.3. 
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/(kW)sP

_s ratedP

2
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Fig 5.3 The relationship between the output power of a solar generating source and the illumination 

intensity 

 

3.4 The Uncertainty of Future Load Growth  

 

Suppose that the original load on node i is *

(0)LiP , and the load growth at this node in the year t of the 

planning period is ( )
Li

P t  and follows the normal distribution, i.e. 2
( , )( ) ~ ( ) ( )

iLi iP t N t t  [E. 

Handschin et al, 2006]. Thus, the load on node i in year t is *( ) ( ) ( )
LiLi LiP P Pt t t . 
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3.5 The Uncertainty of Fuel Prices 

 

For the fueled DGs such as micro turbines, the operating costs mainly consist of the fuel (coal, oil, 

gas etc.) costs. However, the fuel price in the future is affected by many factors, and could not be 

accurately forecasted. 

 

Generally, the volatile fuel price is deemed to follow the Geometric Brownian Motion (GBM) [G. 

Z. Liu et al, 2009]: 

 

( )
( )

( )

f

f f

f

dp t
dt dW t

p t
     (6) 

 

Where: 

 ( )fp t  is the fuel price in year t ; 

 f  is the expected value of the variation of the fuel price during the planning period; 

 f  is the standard deviation of the variation of the fuel price during the planning period; 

 ( )W t is the standard Brownian Motion, ( ) ~ ( , )W t N t ; 

 dt  is the time step length, and is specified to be one year  in this chapter. 

 

Hence, during the planning period, the fuel price in year t  can be obtained as follows according to 

Eqn. (6): 

 

21
( ) ( 1) exp ( ) ( )

2
f f f f fp t p t t W t     (7) 

 

Where: ( 1)fp t  is the fuel price in year t -1. 

 

4. The Mathematical Model 

4.1 The Objective Function 

 

In this chapter, the objective function is defined to be the minimization of the total costs associated 

with the DGs to be planned, including investment cost, operating cost, maintenance cost and 

network loss cost, in the planning period [G. Celli et al, 2005]. The mathematical model is 

described below: 
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    (8) 

Where: 

 ; 

 , , and  are weighting coefficients; 

 T  is the total number of years in the planning period; 

 IC , MC , OC are respectively the investment cost, maintenance cost and operating cost of DGs, 

and LC  is the network loss cost, in the planning period; 

 ( )
iDGE t represents the optimization variable included in the planning scheme, ( ) 0

iDG tE /1 denotes 

that there will not be /there will be a DG built at node i  in year t ; 

 ( )
i

N

DGP t and ( 1)
i

N

DGP t are the installed capacities of DGs at node i  in year t  and year t , 

respectively; 

 ( )hW t  is the energy loss of the distribution system in year t ; 

 
DGN  is the number of candidate DGs to be installed in the distribution system;  

 ( )
iDGT t is the equivalent generation hours of the DG at node i  in year t ; 

 ( )
i

I

DGC t  is the per unit capacity investment cost of the DG at node i in year t ; 

 ( )
i

O

DGC t is the per unit operating cost of the DG at node i  in  year t ;  

 ( )
i

M

DGC t is the per unit maintenance cost of the DG at node i  in year t . 

 

Specifically speaking, for a renewable DG, ( ) 0
i

O

DGC t ; for a fuel-based DG, its operating cost is 

mainly composed of the fuel cost, and ( )
i

O

DGC t can be obtained by Eqn. (7). For a PEV, its operating 

cost is determined by its charging and discharging cost. The per unit capacity operating cost of a 

PEV can be obtained as 

 

* *

* *

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

i i i i

i

i

i i i i

i

L C C L C C

DG DG DG DGO

DG

DG

G D D G D D

DG DG DG DG

DG

C t r t T t C t r t T t
C t

T t

C t r t T t C t r t T t

T t

 

Where: 

 * *( ) ( ) ( ) ( ) ( )
i i i i i

C C D D

DG DG DG DG DGT t T t T t T t T t ; 

 ( )
i

C

DGT t ( * ( )
i

C

DGT t ) is the charging time of the PEV at node i  in year t  at the valley load (other 

periods); 
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 ( )
i

D

DGT t ( * ( )
i

D

DGT t ) is the discharging time of the PEV at node i  in year t  at the peak load (other 

periods); 

 ( )LC t  ( ( )GC t ) is the retail price (on-grid price) in year t ; 

 ( )
i

C

DGr t ( * ( )
i

C

DGr t ) is the electricity price adjustment coefficient for charging at the valley load (other 

periods) in year t ; 

 ( )
i

D

DGr t ( * ( )
i

D

DGr t ) is the electricity price adjustment coefficient for discharging at the peak load 

(other periods) in year t . 

 

To encourage the owners of electric vehicles to take part in the centralized dispatching, i.e. charging 

in valley/off-peak periods and discharging in peak periods, the electricity prices adjustment 

coefficients for charging and discharging as represented by ( )
i

C

DGr t ( * ( )
i

C

DGr t ) and ( )
i

D

DGr t ( * ( )
i

D

DGr t ) can be 

employed. 

 

4.2 The Weighting Coefficients 

 

Due to the multi-objective feature of Eqn. (8), an algorithm called Analytic Hierarchy Process 

(AHP) is employed here to determine the optimal weighting coefficient for each objective. AHP 

was proposed in 1970‘ and since then it has gradually become an algorithm with extensive 

applications in multi-objective comprehensive evaluations [J. Jeonghwan et al, 2010].  

 

First, by comparing the importance of each two indices (in this chapter, indices refer to objectives), 

a pairwise comparison matrix is formed with the scale from 1 to 9. A larger scale value indicates 

that the index associated is more important. A pairwise comparison matrix can be expresses as 

 

1 2

1

2

11 12 1

21 22 2

1 2

n

n

n

n

n n nn

M M M

M

M

M

m m m

m m m
M

m m m

     (9) 

 

Where: 

 
iM  represents index i and n is the number indices; 

 ( 1,2, , )iim i n  represents the importance comparison result between the index
iM  and itself; 

 
1

( , , 1,2, , )ik

ij

ji jk

m
m i j k n

m m
=  represents the importance comparison result between 

iM and jM . 
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Then, the weighting coefficient for each index can be calculated as 

 

1

1 1

( 1,2, , )

n

n
ij

j

i
nn

n
ij

i j

m

W i n

m

     (10) 

 

In a vector form, the weighting coefficients can be represented as T

1 2[ , , , ]nW W W W . 

 

Finally, the consistency of the pairwise comparison matrix M is checked as follows: 

 

( )
0.1

( 1)

CI max

CR

RI RI

F n
F

F n F
     (11) 

 

Where: 

 
CRF is the consistency ratio, if 0.1CRF , then the weighting coefficient of each index calculated 

by Eqn. (10) is reasonable; 

 
CIF is the consistency index, 

1

max

CI

n
F

n
; 

 
RIF is an random index is a random index, and for different index number n its values are given 

in [J. Jeonghwan et al, 2010]; 

 
max

is the maximal eigenvalue of M and can be calculated by
maxMW W .  

 

4.3 The Chance Constraints 

 

To maintain the secure operation of a distribution system, the current in each feeder cannot exceed 

its limitation. However, this limitation is not a strict constraint and can be violated in a short time 

and to a certain degree. This can be properly handled by a chance constraint below: 

 

Pr ( )( ) 0 , 1,2, ,
Bij ijmax NI t I i j     (12) 

 

Where: ( )ijI t  is the current in the feeder between node i and node j in year t . 
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4.4 The Equality Constraints 

 

The equality constraints are the well-known load flow equations as 

 

1

1

( ) ( ) ( ) ( ) cos ( ) sin ( ) 0

( ) ( ) ( ) ( ) sin ( ) cos ( ) 0

B

i

B

i

N

DG Li i j ij ij ij ij

j

N

DG Li i j ij ij ij ij

j

P t P t V t V t G t B t

Q t Q t V t V t G t B t

   (13) 

 

Where: 

 ( )
iDGP t / ( )

iDGQ t is the total active/reactive output power of the generators at node i  (including the 

operating generators and the newly installed DGs) in year t ; 

 ( )LiP t / ( )LiQ t is the active/reactive load power at node i  in year t ; 

 ( )iV t and ( )jV t are the voltage amplitudes at node i  and node j  in year t , respectively;  

 ijG / ijB is the conductance/susceptance between node i  and node j ; 

 ( )ij t is the voltage angle between node i  and node j  in year t ; 

 
BN  is the number of nodes in the distribution system. 

 

4.5 The Inequality Constraints 

 

The deterministic constraints considered here mainly include the upper and lower limits of active 

output power of DGs (i.e.
imaxDGP and

iminDGP ), the upper and lower limits of reactive output power of 

DGs (i.e.
imaxDGQ and

iminDGQ ), the given permitted penetration capacities of DGs in the distribution 

system (i.e.
DGmaxP ), the upper and lower voltage limits at each node (i.e.

imaxV and
iminV ). The inequality 

constraints considered here are formulated below: 

 

1

( ) 1,2, ,

( ) 1,2, ,

( ) 1,2, ,

( ) 1,2, ,
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    (14) 

 

Thus, the developed mathematical model of the CCP-based optimal siting and sizing of DGs can be 

formulated as 
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    (15) 

 

Where:
LN  is the number of feeders in the distribution system. 

 

It should be mentioned that the developed methodological framework in this chapter could 

accommodate other uncertainties and constraints as well. 

 

5. Solving Strategies 

 

5.1 Checking of Chance Constraints 

 

In this chapter, the well-established Monte Carlo Simulation procedure is employed to check if 

chance constraints hold. Based on the probability distribution functions of associated stochastic 

variables, 
SN  samples could be generated by using random number generators. Suppose that among 

the 
SN  simulations, the number that chance constraints hold is

FN . Then, /F SN N  could be used to 

estimate the probability that chance constraints hold. If and only if /F SN N  is larger than or equal to 

the specified confidence interval, then the chance constraint holds [N. Yang and F. S. Wen, 2005a; 

N. Yang and F. S. Wen, 2005b]. 

 

5.2 Solving Steps 

 

A Monte Carlo simulation embedded genetic algorithm approach is employed to solve the 

optimization problem described by Eqn. (15). First, the chance constraints are dealt with by the 

penalty function method. Secondly, the fitness function is formed by the objective function and 

penalty constraints together [G. Celli et al, 2005]. The detailed solving steps are as follows: 

 

Step 1) Specify some parameters including 
SN , and the ones associated with the genetic algorithm 

such as the population size
PN , crossover probability 

CP , and mutation probability
MP , and 

the maximum permitted generation number 
CN . 

Step 2) Randomly generate 
PN  chromosomes and check their feasibilities by the Monte Carlo 

simulation. 
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Step 3) Update the 
PN chromosomes by crossover and mutation operators according to the 

specified probabilities
CP  and

MP , and check their feasibilities again by the Monte Carlo 

simulation. 

Step 4) Calculate the objective function value of all chromosomes such produced. 

Step 5) Calculate the fitness value of each chromosome in terms of the objective function value. 

Step 6) Select the chromosomes in the current population by the roulette wheel method. 

Step 7) Repeat Step 4 to Step 7 for 
CN  times.  

Step 8) Select the best chromosome found in the above solving procedure as the optimal solution 

of the siting and sizing of DGs. 

 

The flowchart of the GA-embedded Monte Carlo simulation procedure is shown in Fig 5.5. 
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Fig 5.5 The flowchart of the GA-embedded Monte Carlo simulation procedure 
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6. Case studies 

 

The IEEE 37-node test feeder [IEEE Distribution System Analysis Subcommittee, 2004], as shown 

in Fig 5.6, is used for demonstrating the developed model and method. In A computer program is 

developed in the Matlab 7 and Visual C++ 6.0 environment.  
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Fig 5.6 The IEEE 37-node test feeder 

 

Some parameters are specified as follows: 

 

1) The planning period: 3T .  

2) The reference voltage at the supply substation is 1.00.  

3) The confidence levels: 0.95, 0.95 . 

4) The parameters associated with the original loads and the probability distributions of the load 

growth are shown in Table 5.1 and Table 5.2, respectively. 

5) According to Eqn. (10), the pairwise comparison matrix about the four indexes (investment 

cost, maintenance cost, operating cost and network loss cost) in Eqn. (8) is given as 
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Then, in terms of Eqn. (11), the optimal weighting coefficients of the four indexes are: 0.39 , 

0.39 , 0.12 , 0.10 , and the consistency ratio 
CRF = 0.056 < 0.1. 

6) For the wind generation, the cut-in, cut-out, and rated wind speeds are respective specified as 

14
ci

v m s ,  120
co

v m s , and 115
r

v m s ; the shape index is 2.0k ; the scale index is 6.5c . 

7) For the photovoltaic generation, the rated illumination intensity is 1000
r

s
2W m ; the shape 

index is 1.8k ; the scale index is 5.5c . 

8) The candidate schemes for the types, siting and sizing of DGs are shown in Table 5.3. In each 

year of the planning period, the retail electricity price for consumers and on-grid prices for 

DGs are shown in Table 5.4. The investment and maintenance costs of a plug-in electric 

vehicle as well as the electricity price adjustment coefficients in the planning period are 

shown in Table 5.5. The investment and maintenance costs of renewable DGs and fueled DGs 

in the planning period are shown in Table 5.6 and Table 5.7, respectively. 

9) In the Monte Carlo simulation embedded genetic algorithm approach, the parameters are 

specified as follows: 5000SN ; 30PN ; 0.3CP ; 0.2MP ; 1000CN . 

 

 

Table 5.1 The original loads 

Node Load Model* PLi/(kW) QLi/(kVar) 
701 D-PQ 140.0 70.00 

712 D-PQ 0.000 0.000 

713 D-PQ 0.000 0.000 

714     D-I 17.00 8.000 

718    D-Z 85.00 40.00 

720 D-PQ 0.000 0.000 

722     D-I 0.000 0.000 

724    D-Z 0.000 0.000 

725 D-PQ 0.000 0.000 

727 D-PQ 0.000 0.000 

728 D-PQ 42.00 21.00 

729     D-I 42.00 21.00 

730     D-Z 0.000 0.000 

731    D-Z 0.000 0.000 

732 D-PQ 0.000 0.000 

733     D-I 85.00 40.00 

734 D-PQ 0.000 0.000 

735 D-PQ 0.000 0.000 

736    D-Z 0.000 0.000 

737     D-I 140.0 70.00 

738 D-PQ 126.0 62.00 

740 D-PQ 0.000 0.000 

741     D-I 0.000 0.000 

742    D-Z 8.000 4.000 

744 D-PQ 42.00 21.00 

*Notes:  

1) D-PQ: The load is assigned with the delta connection code and constant kW and kVar model; 

2) D-I: The load is assigned with the delta connection code and constant current; 
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3) D-Z: The load is assigned with the delta connection code and constant impedance 

 

Table 5.2 Probability distribution parameters of the load growth 

Node 
1t  2t  3t  

( )i t /(kW) ( )i t /(kW) ( )i t /(kW) ( )i t /(kW) ( )i t /(kW) ( )i t /(kW) 

701 30.84 6.20 40.14 10.38 47.04 12.08 

712 8.38 2.03 10.93 4.60 15.40 6.94 

713 6.89 2.62 9.30 3.63 12.37 5.48 

714 9.81 4.47 11.56 4.04 14.00 4.51 

718 2.93 1.13 3.37 2.57 4.34 2.73 

720 6.90 3.32 6.90 3.32 8.739 4.29 

722 13.74 4.65 15.82 5.21 17.93 6.00 

724 4.63 1.03 4.83 1.90 5.38 2.12 

725 5.01 2.00 5.93 2.67 6.02 2.90 

727 8.74 3.20 9.14 4.56 10.00 4.80 

728 14.87 3.73 15.45 4.74 16.24 4.86 

729 3.23 2.42 4.53 3.59 5.75 4.14 

730 5.23 1.25 5.60 1.35 6.23 2.33 

731 6.32 2.73 7.25 3.07 7.98 3.69 

732 5.92 3.21 6.45 4.32 7.93 5.56 

733 27.98 14.64 30.10 15.63 32.87 15.71 

734 4.34 1.86 4.47 1.98 5.23 2.06 

735 4.34 1.86 4.47 1.98 5.23 2.06 

736 23.21 10.10 24.27 11.34 25.35 13.21 

737 43.73 24.83 44.35 24.96 47.97 27.62 

738 30.39 15.83 32.43 16.36 33.64 17.75 

740 13.30 5.02 14.07 5.53 15.34 6.48 

741 17.62 4.24 17.96 5.01 18.03 5.83 

742 25.24 12.23 28.02 14.45 36.38 15.39 

744 13.84 2.33 14.57 2.374 18.08 3.72 

Note: ( )i t and ( )i t are the mean value and standard deviation of load growth at node i, respectively. 

 

Table 5.3 The candidate schemes for the types, siting and sizing of DGs 

Siting of DGs Sizing of DGs/(kW) Types* 

704 5.00, 10.00, 15.00 1, 2 

705 5.00, 10.00, 15.00 1, 2 

718 10.00, 15.00, 20.00 1, 2, 3 

722 10.00, 15.00, 20.00 1, 2, 3 

729 10.00, 15.00, 20.00 1, 2, 3 

732 10.00, 20.00, 30.00 1, 2, 3, 4 
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736 10.00, 20.00, 30.00 1, 2, 3, 4 

741 20.00, 30.00, 40.00 1, 2, 4 

742 40.00, 50.00, 60.00 1, 2, 4 

*Notes: 1-wind generation, 2-photovoltaic generation, 

3-PEV, 4-fueled DGs 

 

Table 5.4 The retail prices and on-grid prices in the planning period 

Year 
Retail prices On-grid prices 

( )LC t /( -1
$ kWh ) ( )GC t /( -1

$ kWh ) 

1t  0.08 0.06 

2t  0.09 0.07 

3t  0.10 0.08 

 

Table 5.5 The investment and maintenance costs of a plug-in EV as well as electricity price 

adjustment coefficients in the planning period 

Year 
( )

i

I

DGC t / 

( -1
$ kW ) 

( )
i

M

DGC t / 

( -1
$ kWh ) 

Electricity price adjustment 

coefficients for charging 

Electricity price adjustment 

coefficients for discharging 

( )
i

C

DGr t  * ( )
i

C

DGr t  ( )
i

D

DGr t  * ( )
i

D

DGr t  

Off-peak periods 

(23:00-7:00) 

Other periods 

(7:00-23:00) 

On-peak periods 

(9:00-11:00, 

19:00-23:00) 

Other periods 

(23:00-9:00, 

11:00-19:00) 

1t  1500.00 0.03 0.75 1.25 1.25 0.75 

2t  1250.00 0.02 0.80 1.20 1.20 0.80 

3t  1000.00 0.01 0.85 1.15 1.15 0.85 

 

Table 5.6 The investment, maintenance and operating costs of renewable DGs in the planning 

period 

Year 
Wind generation Photovoltaic generation 

( )
i

I

DGC t /( -1
$ kW ) ( )

i

M

DGC t /( -1
$ kWh ) ( )

i

O

DGC t /( -1
$ kWh ) ( )

i

I

DGC t /( -1
$ kW ) ( )

i

M

DGC t /( -1
$ kWh ) ( )

i

O

DGC t /( -1
$ kWh ) 

1t  1,800.00 0.05 0.00 2,000.00 0.03 0.00 
2t  1,650.00 0.04 0.00 1,750.00 0.02 0.00 
3t  1,400.00 0.03 0.00 1,650.00 0.01 0.00 
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Table 5.7 The investment and maintenance costs of fueled DGs in the planning period 

Year 
Fueled DGs 

( )
i

I

DGC t /( -1
$ kW ) ( )

i

M

DGC t /( -1
$ kWh ) 

1t  850.00 0.04 
2t  800.00 0.03 
3t  760.00 0.02 

 

Table 5.8 Optimal siting and sizing of DGs in the planning period 

( 0.95, 0.95 ) 

Types Node 
( )

i

N

DGP t /(kW) 

1t  2t  3t  

Renewable 

DGs 

Wind generation 718  10.00 20.00 
722 10.00 15.00 20.00 

Photovoltaic 

generation 
729   10.00 

Fueled DGs 

732  10.00 10.00 
736 10.00 20.00 30.00 
741 30.00 30.00 40.00 
742 40.00 50.00 50.00 

PEVs 718  10.00 15.00 
722 10.00 10.00 15.00 

Network loss ratio/(%) 2.71 1.96 1.56 

 

Table 5.9 The cost items in the planning period 

Year IC /($) OC /($) MC /($) LC /($) 

1t  101,000.00 55,819.51 19,612.40 8,744.00 

2t  61,250.00 85,479.16 18,804.50 7,870.50 

3t  46,200.00 98,734.57 16,610.15 7,615.00 

 

The optimal siting and sizing of DGs and the cost items in the planning period under the confidence 

levels of 0.95 and 0.95 are shown in Table 5.8 and Table 5.9, respectively. With the load 

growth in the planning period, several new DGs are built in this test feeder each year. Moreover, the 

sizing of each kind of DGs follows an increasing trend as shown in Fig.7. 

 

On the other hand, the network loss ratio has been decreased from 2.71% to 1.56% in the planning 

period, as shown in Table 5.8, and this represents a 42.44% reduction. 
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Fig 5.7 The optimal sizing of each kind of DGs in each year during the planning period 

 

As shown in Fig 5.8, the numbers of PEVs and new renewable DGs are increasing more quickly in 

the planning period compared with fueled DGs. The total costs of PEVs and renewable DGs are 

declining gradually due to technology development, as shown in Table 5.5 and Table 5.6. It is 

5.6nown from Table 5.7 and Table 5.9, although the investment and maintenance costs of fueled 

DGs are also decreasing, the growth of their operating costs caused by the increasing fueled price is 

much more than those of PEVs and renewable DGs. Therefore, in the long run, the fueled DGs will 

become less competitive. 
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Fig 5.8 The proportion of the annually added capacity of each kind of DGs during the planning 

period 

 

From Fig 5.9, it could be observed that in each year of the planning period with newly added DGs, 

the voltage profile at each node of the test feeder has been greatly improved.  
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Fig 5.9  The voltage variations at each node of the test feeder with added DGs in the planning 

period 
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7. Conclusions 

 

Under the chance constrained programming framework, a new mathematical model is developed to 

handle some uncertainties such as the stochastic output power of a PEV, that of a renewable DG, 

volatile fuel prices and future uncertain load growth in the optimal siting and sizing of DGs. Then, a 

Monte Carlo simulation embedded genetic algorithm approach is presented to solve the developed 

CCP model. Finally, the test results of the IEEE 37-node test feeder demonstrate the feasibility and 

effectiveness of the developed model and method. 

 

References 

S. Rahman and G. B. Shrestha (1993). ―An investigation into the impact of electric vehicle load on 

the electric utility distribution system.‖ IEEE Transactions on Power Delivery, 8(2), 591-597. 

K. Clement-Nyns, E. Haesen, and J. Driesen (2010). ―The impact of charging plug-in hybrid 

electric vehicles on a residential distribution grid.‖ IEEE Transactions on Power Systems, 

25(1), 371-380. 

P. Mitra and G. K. Venayagamoorthy (2010). ―Wide area control for improving stability of a power 

system with plug-in electric vehicles.‖ IET Generation, Transmission & Distribution, 4(10), 

1151-1163. 

P. T. Staats, W. M. Grady, A. Arapostathis, and R. S. Thallam (1997). ―A procedure for derating a 

substation transformer in the presence of wide spread electric vehicle battery charging.‖ IEEE 

Transactions on Power Delivery, 12(4), 1562 - 1568. 

J. G. Vlachogiannis (2009). ―Probabilistic constrained load flow considering integration of wind 

power generation and electric vehicles.‖ IEEE Transactions on Power Systems, 24(4), 1808-

1817. 

M. Etezadi-Amoli, K. Choma, and J. Stefani (2010). ―Rapid-charge electric-vehicle stations.‖ IEEE 

Transactions on Power Delivery, 25(3), 1883 - 1887. 

M. R. Haghifam, H. Falaghi and O.P. Malik (2008). ―Risk-based distributed generation placement.‖ 

IET Generation, Transmission and Distribution, 2(2), 252-260. 

D. Zhu, R. P. Broadwater, K. S. Tam, R. Seguin, and H. Asgeirsson (2006). ―Impact of DG 

placement on reliability and efficiency with time-varying loads.‖ IEEE Transactions on Power 

Systems, 21(1), 419 - 427. 

W El-Khattam, Y. G. Hegazy, and M. M. A. Salama (2005). ―An integrated distributed generation 

optimization model for distribution system planning.‖ IEEE Transactions on Power Systems, 

20(2), 1158 - 1165. 



 81 

C. S. Wang, and M. H. Nehrir (2004). ―Analytical approaches for optimal placement of distributed 

generation sources in power systems.‖ IEEE Transactions on Power Systems, 19(4), 2068 - 

2076 . 

G. Carpinelli, G. Celli, S. Mocci, F. Pilo and A. Russo (2005). ―Optimisation of embedded 

generation sizing and siting by using a double trade-off method.‖ IEE Proceedings: 

Generation, Transmission and Distribution, 152(4), 503-513. 

A. Keane, and M. O‘Malley (2005), ―Optimal allocation of embedded generation on distribution 

networks,‖ IEEE Transactions on Power Systems, 20(3). 

K. H. Kim, K. B. Song, S. K. Joo, Y. J. Lee, and J. O. Kim (2008). ―Multiobjective distributed 

generation placement using fuzzy goal programming with genetic algorithm.‖ European 

Transactions on Electrical Power, 18(3), 217-230. 

R. K. Singh and S. K. Goswami (2009). ―Optimum siting and sizing of distributed generations in 

radial and networked systems,‖ Electric Power Components and Systems, 37(2), 127-145. 

D. Gautam and N. Mithulananthan (2007). ―Optimal DG placement in deregulated electricity 

market.‖ Electric Power Systems Research, 77(12), 1627-1636. 

S. Ghosh, S. P. Ghoshal, and S. Ghosh (2010). ―Optimal sizing and placement of distributed 

generation in a network system.‖ Electrical Power and Energy Systems, 32(8), 849-856. 

T. Gözel and M. H. Hocaoglu (2009). ―An analytical method for the sizing and siting of distributed 

generators in radial systems.‖ Electric Power Systems Research, 79(6), 912-918. 

M. M. Elnashar, R. E. Shatshat, and M. A. Salama (2010). ―Optimum siting and sizing of a large 

distributed generator in a mesh connected system.‖ Electric Power Systems Research, 80(6), 

670-697. 

N. Yang and F. S. Wen (2005). ―A chance constrained programming approach to transmission 

system expansion planning.‖ Electric Power Systems Research, 75(2-3), 171-177. 

B. Liu (1999), Uncertain Programming, New York: Wiley. 

J. H. Zhao, F. S. Wen, Y. S. Xue, Z. Y. Dong (2010). ―Power system stochastic economic dispatch 

considering the uncertain outputs from plug-in electric vehicles and wind generators.‖ 

Automation of Electric Power Systems, 34(20), 1-8. 

A. E. Fijoo, J. Cidras, J.L.G. Dornelas (1999). ―Wind speed simulation in wind farms for steady-

state security assessment of electrical power systems.‖ IEEE Transactions on Energy 

Conversion, 14(4), 1582-1588. 



 82 

Y. M. Atwa, E. F. El-Saadany, R. Seethapathy, and M. M. A. Salama (2008). ―Effect of wind-based 

DG seasonality and uncertainty on distribution system losses.‖ 40th North American Power 

Symposium, 1-6. 

N. Mutoh, T. Matuo, K. Okada, M. Sakai (2002). ―Prediction-data-based maximum-power-point-

tracking method for photovoltaic power generation systems.‖ IEEE Annual Power Electronics 

Specialists Conference, 1489-1494. 

E. Handschin, F. Neise, H. Neumann, and R. Schultz (2006). ―Optimal operation of dispersed 

generation under uncertainty using mathematical programming.‖ Electrical Power and Energy 

Systems, 28(9) , 618-626. 

G. Z. Liu, F. S. Wen, and Y. S. Xue (2009). ―Generation investment decision-making under 

uncertain greenhouse gas emission mitigation policy.‖ Automation of Electric Power Systems, 

33(18), 17-22. 

G. Celli, E. Ghiani, S. Mocci, and F. Pilo (2005). ―A multiobjective evolutionary algorithm for the 

sizing and siting of distributed generation.‖ IEEE Transactions on Power Systems, 20(2), 750-

757. 

J. Jeonghwan, L. Rothrock, P. L. Mcdermott, M. Barnes (2010). ―Using the analytic hierarchy 

process to examine judgment consistency in a complex multiattribute task.‖ IEEE Transactions 

on Systems, Man and Cybernetics, Part A: Systems and Humans, 40(5), 1105-1115. 

N. Yang and F. S. Wen (2005). ―Risk-constrained multiage transmission system expansion 

planning.‖ Automation of Electric Power Systems, 29(4), 28-33. 

IEEE Distribution System Analysis Subcommittee (2004, Nov. 05). IEEE Radial Test Feeders. 

[Online]. Available: http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders.html. 

 



 

 83 

CHAPTER 6. A HYBRID APPROACH FOR PLANNING DISTRIBUTED 

GENERATION EMPLOYING CHANCE CONSTRAINED 

PROGRAMMING 
 

Siting and sizing of renewable energy distributed generation into existing distribution systems is 

essential to ensure the best benefits achievable from such resources while maintaining the secure 

and reliable operation of the distribution systems. In this chapter, a new methodology for planning 

embedded renewable energies within a distribution grid is developed. The new method minimizes 

various costs arising from the investment and running of the renewable energies, the network loss, 

as well as the costs due to the expected energy not supplied (EENS). To address the uncertainties 

associated with distribution systems containing distributed generation, the chance constrained 

programming (CCP) is applied to consider uncertain future in the planning horizon. A Monte-Carlo 

simulation embedded Harmony Search (HS) method is developed solve the proposed planning 

model. A case study has been carried out using the IEEE 37-node distribution network, and the 

results demonstrated the effectiveness of the proposed method. 

 

NOMENCLATURES 

 

CI, Annual equivalent capital cost for DG installation 

CO Annual running (operating and maintenance ) cost of DG  

CL Annual network loss cost 

CR Annual cost due to supply loss 

n The period taken into consideration in year 

NRE-DG The number of installed DGs 

,RE DG kP
 The installed capacities of DG k. 

,RE DG kW  The total generation output of DG k in a year 

Wp Annual network loss within the distribution system 

Ra Annual expected energy not supplied in MW 

ce, cr, cf and cw The per unit cost due to capital, running, network loss and supply loss down 

time constraint. 

GiP , 
GiQ  Real and reactive power outputs of node i.  

LiP , 
LiQ  Real and reactive demands at bus i. 

iV , jV  Voltage magnitudes of node i and node j. 

ijG , ijB  Conductance and susceptance between node i and node j 

ij  voltage angle between node i and node j 

nN  The number of nodes within the distribution system 

RE DG

iP  The capacity of DG connected to node i. 
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,max

RE DG

iP  The maximum admitted capacity of DG at bus i. 

 Scale factor 

mI  Current magnitude of branch m. 

max

mI  The maximum allowed current of branch m. 

BN  The number of branches 

q  The failure rate of component q. 

s, c The shape and  scale indices of the Weibull distribution 

ci
v  The cut-in wind speed. 

co
v  The cut-out wind speed. 

rate
v  The rated wind speed 

rated
P  The rated output power of the wind unit 

 The set of system states sampled by MCS 

( )p E  The probability of system state E 

( )P E  The amount of load curtailment within state E, if exists. 

V
, 

I
 The sets of nodes and branches which do not satisfy constraints. 

( )iw V , ( )mw I  The penalty factors. 

X  A decision-making vector 

 A set of stochastic variables with known probability distributions. 

( , ) 0
h

g X  

( 1, 2, , )ch N  

 

Stochastic constraints 

( , )f X  The objective function 

f  The optimal value of the objective function. 

,  The given confidence Levels. 

Pr{}  The probability of the event included in{} . 

min

iV , max

iV  The maximum/minimum allowed voltage magnitudes at bus i. 

,V i  The confidence level for the nodal voltage of bus i. 

,I m  The confidence level for the current of branch m. 

 

1. Introduction 

Renewable Energy Distributed Generation (RE-DG) technique is receiving increased attention in 

recent years due to their environmental benefits and improved economy [E. J. COSTER et al, 

2011]. Utilities may use the RE-DGs to relive network congestion, reduce network losses, minimize 

emissions, delay transmission investment and improve the reliability of electricity supply [E. J. 

COSTER et al, 2011; M. VARADARAJAN and K. P. UP, 2009; V. H. M. QUEZADA et al, 2006]. 

Although RE-DGs can bring significant benefits, they also impose new challenges to the secure and 

economical operation of power systems. Studies [E. J. COSTER et al, 2011; M. VARADARAJAN 

and K. P. UP, 2009; V. H. M. QUEZADA et al, 2006; C. S. WANG and M. NEHRIR, 2004; S. H. 

LEE and J. W. PARK, 2009; S. GHOSH et al, 2010; G. CELLI et al, 2005; Y. M. ATWA and E. F. 
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EI-SAADANY, 2009; G. GARPINELLI et al, 2011] have indicated that the beneficial effects from 

REs depend very much on the siting and sizing of such resources and unfavorable effects can be 

resulted if without appropriate planning. Hence, how to optimally plan the construction of RE-DGs 

to yield the maximum benefits without degrading the system security is a crucial issue. By far, lots 

of works [C. S. WANG and M. NEHRIR, 2004; S. H. LEE and J. W. PARK, 2009; S. GHOSH et 

al, 2010; G. CELLI et al, 2005; Y. M. ATWA and E. F. EI-SAADANY, 2009; G. GARPINELLI et 

al, 2011] has been reported to deal with the problem. Among them, the most used is the analytic 

model-based methods [S. GHOSH et al, 2010; G. CELLI et al, 2005; Y. M. ATWA and E. F. EI-

SAADANY, 2009; G. GARPINELLI et al, 2011]. In this kind of approaches, an optimization 

objective, with a list of technical constraints, is formulated. Then an optimization method, such as 

the Genetic Algorithm (GA) or other Evolution Algorithms (EAs), is employed to search for an 

optimal solution which minimizes or maximizes the specified objective. In [S. GHOSH et al, 2010], 

the objective is defined to minimize the total related costs, such as capital cost, running cost, 

network loss cost and cost of energy losses, while satisfying the constraints, e.g. power balance, 

voltage limits, equipment capacity limits and maximum penetration limits of DG. 

 

Since there is a high degree of uncertainty associated with the power system planning [Z. XU et al, 

2006a; Z. XU et al, 2006b], e.g. the availabilities of components and fluctuation production of RE-

DG, the voltage and power flow of the local system is likely to fluctuate, which may lead to over- 

or under-voltage at the customer‘s receiving point and overloading of other system components. 

Hence, how to reasonably account for the uncertainties, so as to maintain the secure and reliable 

operation of a power system, is a key issue in the decision-making procedure of siting and sizing of 

RE-DGs.  

 

To cope with the uncertainties, probabilistic approaches, based on multi-scenario technique, have 

been extensively developed in [G. CELLI et al, 2005; Y. M. ATWA and E. F. EI-SAADANY, 

2009; G. GARPINELLI et al, 2011]. Such approaches treat the uncertainty involved in a decision-

making problem via a set of possible scenarios. For each scenario taken into account, an optimal 

planning scheme is obtained and then the best scheme is determined considering the scenarios with 

their probability. To accurately represent the most plausible realizations of the actual power system, 

the number of scenarios needed to be considered is generally very large, which may the 

complexities of planning analysis. In [G. CELLI et al, 2005; Y. M. ATWA and E. F. EI-

SAADANY, 2009; G. GARPINELLI et al, 2011], only few representative scenarios are analyzed 

without considering the full spectrum of uncertainties involved. 

 

In addition, to date, the potential of using embedded DGs to improve system reliability has not been 

efficiently addressed in the most established approaches. A major reason is that utilities normally do 

not permit islanding operations of distribution systems due to security issues. However, with the 
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increasing RE-DGs penetration, intentional islanding operation in some cases based on such 

resources becomes possible to improve local grid reliability [S. BAE and J. O. KIM, 2007].  

 

Based on the previous works, a novel planning methodology, based on chance constrained 

programming (CCP), has been proposed for optimally planting RE-DG into the distribution systems 

so as to maximize the benefits. In this chapter, the RE-DG planning problem is formulated as a 

stochastic optimization problem subject to security limitations as chance constraints. The model to 

be developed could not only to yield the maximum benefits, but also maintain the performance of 

system under an uncertain environment. A new methodology is developed to evaluate the reliability 

of distribution systems with embedded RE-DGs, in which the intentional islanding operation of 

distribution grids in some cases is taken as an important way to improve system reliability and 

reduce outages. Based on the developed model and approach, the IEEE 37-node test system is 

employed to verify the effectiveness, and test results have demonstrated that the voltage profile and 

power flow can be significantly improved and the cost from loss of supply substantially reduced. 

 

2. Overview of the planning method 

 

RE-DG planning is a complex process that involves significant workloads. In general, the procedure 

should cover stages of reliability assessment, demand and fuel prices forecasts, security assessment, 

and cost and benefit analysis etc. For particularly RE planning, assessment of wind or solar 

resources is necessary.  

 

The flowchart of the proposed planning method is given in Fig 6.1. The method consists of several 

stages including initialization, problem formulation, solving the model and the final security 

assessment. 

 

1) Initialization 

Utilities need to investigate the system and environment information, such as demand forecast and 

wind conditions, and then formulate candidate sites for DG installation.  

 

2) Problem formulation 

In this stage, the planning of DG problem is formulated as a mathematical model, with the objective 

to yield the maximum benefits of integration DG as well as various constraints assigned by human 

knowledge. 

 

3) Solving the mathematical model 

Some optimization algorithms are adopted to solve the developed mathematical model, which 

involves various costs and benefits evaluation for integration of DG, e.g. reliability improvement 
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and network loss reduction, and constraints check. A preferred option which maximizes the benefits 

of DG while satisfying the constraints is then obtained. 

 

4) Final security assessment 

The resultant optimal plan from the analytic model-based approach maybe, however, without 

considering some technique issues, e.g. conflicting to existing protection scheme and the increase of 

short-circuit current level. Therefore, the obtained scheme needs to be assessed by decision-makers 

with practical engineering and management concerns, so as to ensure the rationality for 

implementation. 

 

Start

Initialization

1. Input original information 

2. Create candidate planning pool      

Is the prescribed 

security criteria satisfied?

Performing security assessment of 

the obtained scheme

Output the final scheme

End

Yes

No

Problem formulation

Solving the mathematical 

model
Revise the option 

with human

knowledge

 

Fig 6.1 Flowchart of the hybrid planning scheme for DG 

 

The main focus of this chapter is on a new planning approach considering uncertainties due to 

intermittent generations of RE-DGs and consequent impacts to the system reliability. Other works, 

such as demand forecasting, wind or solar resource assessment and security assessment will not be 

covered. The details associated will be clarified in the following sections 
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3. Problem formulation  

3.1 Chance Constrained Programming 

 

In a highly uncertain environment, the absolute reliability and security of power system can not be 

unconditionally guaranteed. To properly address uncertainties involved in RE-DG planning, the 

chance constrained programming (CCP) [N. YANG et al, 2007; N. YANG et al, 2005; J. WANG et 

al, 2004] provides a good means for solving this kind of problems. It is a stochastic programming 

method in which the constraints or objective function of an optimization problem contains 

stochastic parameters. CCP allows that the decision-making procedure does not strictly fulfil every 

constraint; rather the constraints are respected with a certain probability, called the confidence level, 

assigned by the system decision-maker, at the optimum solution point. A generalized CCP problem 

can be expressed as the following form. 

 

min

. .

Pr ( , )

Pr ( , ) 0 ( 1,2, , )ch

f

s t

f X f

g X h N

                  (1) 

 

3.2 The Mathematical Model 

 

1) Objective 

 

The objective function is defined to be the minimizing of the equivalent annual total costs 

associated with the RE-DGs to be planned, including capital cost, running cost (operating and 

maintenance cost), network loss cost, and cost of supply lost, in the planning horizon. The 

mathematical objective is described below: 
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                (2) 

 

2) Constraints 

  

 The physical constraints for RE-DGs planning are described below. 



 

 89 

 

(1) Total power conservation 

1
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               (3) 

 

(2) RE-DGs installed capacity constraint at each node 

,max0
RE DG RE DG

i iP P                    (4) 

 

(3) Total RE-DGs installing capacity maximum penetration limit: the RE-DGs penetration should 

be smaller or equal to the specified amount. 

max

,

1

RE DGN

RE DG k load

k

P P                               (5) 

Where  is usually to be 0.5. 

 

(4) Bus voltage magnitude limit chance constraint 

min max

r ,P { }     1,2,...,i i i V i nV V V i N
 

              (6) 

 

(5) Distribution feeder‘s thermal rating limit chance constraints 

max

r ,P ( )         1,2,...,m m I m BI I m N

                 
(7)

 
 

It should be noted that depending on the market rules which guide the planning, slightly different 

cost and benefit evaluations may be required. The proposed approach, however, is a general 

approach and can be easily adapted to different situations/markets.  

 

4. Modeling of uncertain factors 

 

Among the uncertainties encountered in RE-DG planning, the availabilities of equipments and 

intermittent production are included in this chapter. However, it must be emphasized that the 

framework described in this chapter does not preclude the inclusion of other uncertainties. 

 

1) Equipment availabilities 

 

Due to unscheduled outages, the availabilities of equipments are random variables, i.e. the 

availability of component q can be expressed as: 
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1 ,   1
( )

,        0

q j

q j

q j

x
p X x

x
                          (8) 

where 1jx  denotes that the component q is available, and 0jx  denotes the component is outage. 

 

2) Output of distributed wind generator  

 

As output from RE-DG is dependant upon the current environmental conditions, consequently, it is 

inherently intermittent.  

 

Wind speed v  is usually represented with Weibull distribution ( , )s c with the probability density 

function [G. CELLI et al, 2005; Y. M. ATWA and E. F. EI-SAADANY, 2009; G. GARPINELLI et al, 

2011]: 

 

( )

( ) ( ) 1
sv

cF v f V v e                            (9) 

 

The relationship between the output power of a wind generating unit and the wind speed can be 

formulated as [S. BAE and J. O. KIM, 2007]: 
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                  (10) 

 

5. Solution method 

5.1 Reliability Evaluation of Distribution System Containing RE-DG 

 

Both analytical [G. CELLI et al, 2005] and simulation [S. BAE et al, 2004] techniques can be used 

to evaluate the reliability of an electric power system containing DGs. The analytical techniques are 

less time consuming, however, the uncertainties due to intermittent nature of DGs and other factors 

cannot be easily incorporated. Therefore, the simulation approach is used to accommodate 

uncertainties due to DGs in reliability evaluation of distribution networks in this chapter.  
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 Reliability indices 

 

From system planning point of view, reliability indices such as the Loss of Load Probability 

(LOLP), Loss of Load Expectation (LOLE) and Expected Energy Not Supplied (EENS) or 

Expected Unserved Energy (EUE), are calculated to reflect the expected system performance on 

average. The most popular index is EENS, which is also adopted to assess the reliability of a 

distributed system with DGs in this chapter. Furthermore, the interruption cost is measured by the 

social production value of load loss, as described in (1). 

 

 The main procedure 

 

The procedure simulation based reliability assessment with DGs presence consists of the following 

steps.  

 

1) System states generation 

 

In this chapter, the non-sequential Monte Carlo Simulation (MCS) is employed to simulate the 

uncertainties due to equipment availabilities and intermittent DG productions. For simplicity, the 

operating statuses such as the unit availability and DG output are generated based on random seed 

variables without any chronological pattern. In addition, no correlations are considered for the 

operating state of each individual component.  

 

2) Analysis  of the generated states  

 

When a system state is selected, the power system performance will be analyzed, and if necessary, 

corrective measures may be activated. Traditionally, all DGs are required to shut down due to 

security concerns e.g. when there is a fault. However, with technology advancements, DGs can now 

be a possible measure to improve system reliability, e.g. if islanding is allowed, DGs can 

continuously supply the un-faulted portions of a distribution network. Taking this into consideration, 

the detailed steps of system state evaluation are described in Fig 6.2. 
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Identify islands in the network that 

may still continue service 

Are there line outages?

For each island system

can the power low be solved without violating any 

operating limits？

Activate corrective measures

End

Yes

No

Yes

No

Start

 

Fig 6.2 The flowchart of the system state analysis 

 

For islanded distribution systems, the generation power must be sufficient to supply all loads while 

respecting various operation limitations. Otherwise, a likely consequence is the loss of at least some 

loads. To check this, the simplest approach here is for the operators to provide, in advance, a 

prioritized list of resources according to which loads shedding can be successively made until a 

balanced and feasible operation point is reached. However, it must be emphasized that the 

framework described in this chapter does not preclude other more advanced load shedding methods.  

 

3) If the total simulation times are less than the specified maximum number, go to step 1); 

otherwise to step 4). 

 

4) Computation of reliability indices. E.g., evaluate EENS using the following equation. 

/ ( ) ( ))a

E

EENS R p E P E                          (11) 

5.2 Constraints Check  

 

When applying CCP to optimize the RE-DG planning, an important issue is to judge whether the 

planning scheme can fulfill the chance constraints of both the node voltage operation range and the 

thermal capacities of branches. In this work, the well-established Monte Carlo Simulation procedure 

is employed to check if chance constraints hold. MCS is a class of computational algorithm that 

relies on theory of probability and statistics, especially useful in studying systems with a large 

number of coupled degrees. The MCS algorithm has been very successfully applied in a wide 

variety of power system problems, such as reliability assessment and probabilistic stability analysis. 
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For any given planning decision, the procedure of use MCS to check the constraints is as follows [N. 

YANG et al, 2007]:  

 

1)  Specify the number of Monte Carlo simulations allowed, N. 

2)  Set counter t=0, violation times of voltage magnitude at bus i, 
, 0( 1,2,..., )V i nt i N , and violation 

times of current magnitude of branch m, 
, 0( 1,2,..., )I m Bt m N . 

3)  Sample the RE-DG output. 

4)  Check whether if available generation and circuits are to satisfy the associated load without 

violating any operating limits. If ―yes‖, go to step 5), otherwise go to step 3). 

5)  Calculate 
iV  and 

mI . 

6)  If max

i iV V or min

i iV V  , 
, , 1V i V it t ; if max

m mI I , 
, , 1I m I mt t . 

7)  Set t=t+1. 

8)  If t<K, return to step 3), otherwise go to step 9). 

9)  If 
, ,(1 / )V i V it K , the chance constraint (6) is satisfied; if 

, ,(1 / )I m I mt K , the chance constraint (7) 

is satisfied. 

 

Generally, violations of constraints are handled using a penalty function approach. The penalty 

function is taken as (12). 
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                          (12) 

 

Where 
iV  and 

mI  are defined as follows: 

 

max max

min max

min min
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max max
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0               
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                        (14) 

 

Finally, the fitness function is given below: 

 

min  P O L R V IF C C C C C C                  (15) 
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5.3 Harmony Search for Solving the CCP Model of RE-DG Planning 

 

The Harmony Search (HS) algorithm [Z. W. GEEM et al, 2001; K. S. Lee and Z. W. Geem, 2005], a 

new meta-heuristic algorithm proposed by Z. W. Geem, has recently been developed to imitate the 

musical improvisation process of searching for a perfect state of harmony. The musical 

improvisation process seeking a pleasing harmony (a perfect state) as determined by an aesthetic 

standard is similar to the optimization process that seeks to search for a global solution (a perfect 

state) as determined by an objective function. By far, it has been successfully applied to various 

real-world problems like network planning [A. VERMA et al, 2010] and fault estimation [L. H. 

WEI et al, 2010], as its characteristics of simple in concept, less in parameters, and easy in 

implementation. As shown in Fig 6.3, the procedure of the HS algorithm is carried out by the 

following five steps: 

 

Start

Step 2: Initialize the harmony memory (HM)

Step 4: Update the HM   

1k

maxk K

 Step 3: Improvise a new harmony from the HM

End

Yes

No

Step 1: Initialize the optimization problem and 

algorithm parameters

A new harmony is 

better than a stored harmony in HM?

Step5:

1k k

No

Yes

 

Fig 6.3 The flowchart of RE-DGs planning based on Harmony Search 

 

It should be noted that other evolutionary computation algorithms such as DE or PSO can also be 

used here. The selection of a particular evolutionary algorithm is not the main focus of this chapter. 
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In general, the structure of solution vector for RE-DG planning problem is expressed as 

1 2{ , ,..., }
nNx x x . ―

ix ‖ identifies the installed capacity within bus i, and 0ix  denotes that there will not 

be a DG built at bus i.  

 

6. An application example  

 

The modified IEEE-37, 4.8-kV system is employed to demonstrate the effectiveness of the proposed 

algorithm. The single line diagram of the system is shown in Fig 6.4. 

 

For simplicity, suppose that the conditions for wind generation at each candidate installation site are 

the same: c=2 and s=6. The period taken into account for the planning study is 15 years long, and 

discount rate is 0.1. The per-unit power running cost is 200＄/MWh. To evaluate economic loss of 

outage, the social production value of load loss is 25 times the per-unit power cost. The detailed 

parameters of candidate DGs are listed in Table 6.1. Finally, the presented methodology was 

developed in Visual Studio 2005.  

 

Table 6.1 The parameters of candidate RE-DGs 

 

Rated Capacity/kW 
Operation parameters（m/s） Associate cost  

Power Factor 

civ  
ratev  

cov  
ec  

rc  

50 3 5.5 14 950 10 0.9 

80 4 7 17 950 10 0.9 

 

Table 6.2 Details of RE-DG planning schemes 

Nodes 702 704 708 725 727 738 741 Total Capacity/kW 

Installed Capacity 

/kW 

Scheme A 0 130 0 80 130 50 150 540 

Scheme B 100 80 50 160 0 0 0 390 

 

Table 6.3 Comparison of costs between scheme A and scheme B 

cost

（＄/year） 

Total annual 

cost 

Annual installation 

cost 

Annual cost of operation and 

maintenance 

Annual cost of network 

loss 

Annual cost of loss of 

supply 

Scheme A 327696.601 67446.048 47222.663 49760.000 163267.890 

Scheme B 351711.875 48711.034 27302.972 45119.999 230577.870 

 

Table 6.4 The over-limitation of nodal voltage  

Scheme A 
Nodes 741 711 740 738 737 734 735 736 710 733 732 708 

Violation times  36 28 26 21 17 11 8 8 8 8 6 6 

Scheme B 
Nodes 720 707 722 724 706 725 713 704 710 714 701 702 

Violation times 6 4 3 3 3 3 3 2 2 2 2 2 
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Fig 6.4 Single-line diagram of the IEEE 37-node test feeder 

 

In what follows, two cases are analyzed in order to verify the performance of the approach 

developed. 

 

Case 1): RE-DG planning when considering the cost due to loss of supply and the obtained planning 

scheme is called ―Scheme A‖. 

 

Case 2): RE-DG planning without considering the cost due to loss of supply and the obtained 

planning scheme is called ―Scheme B‖. 

 

Detailed planning results of Scheme A and Scheme B are listed in Table 6.2. 

 

Comparisons of various cost for Scheme A and Scheme B are listed in Table 6.3. 

 

The over-limitations of node voltage (the 12 worst nodes) within Scheme A and Scheme B are listed 

in Table 6.4.  

 

The following can be observed from the planning results and comparisons. 

1) As Table 6.3 and Fig 6.5 shown, compared to Scheme B, the cost due to energy not supplied for 

Scheme A is lower but annual cost due to network loss is higher. It indicates that the multiple 

objectives, involving issues of installation investment, network loss and reliability, may 

contradict each other. It is necessary for planners to give a compromise among the selected 
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objectives reasonably.  

 

0
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installation cost operation cost network loss cost cost of supply loss

$

    

Fig 6.5 The cost comparison between scheme A and scheme B 

 

2) From Table 6.4, it could be observed that the power flow of the local system is to fluctuate due 

to the uncertainty production of RE-DG and this fluctuation would cause overload on the 

components. And this phenomenon is getting worse gradually with an increasing penetration of 

DG. With the proposed method based on CCP in this chapter, the planner could manage the risk 

by specifying the confidence levels in advance. 

 

7. Conclusions 

 

Under the chance constrained programming framework, a new mathematical model is developed to 

handle some uncertainties, with the objective of minimizing the equivalent annual cost as well as 

the security limits as chance constraints. Then, an approach for assessing the reliability of 

distribution systems containing RE-DG, capturing the inherent uncertainty, is presented. Finally, a 

MCS embedded HS method is employed to solve the developed model. A case study is carried out 

to demonstrate the validity and essential features of the proposed model and methodology. The 

work presented in this work is at its initial stage of our continuous development of new planning 

techniques for DGs, in which we believe the hybrid CCP approach is an appropriate technique and 

has more potential in dealing with various uncertainties appeared with introduction of RE-DG. 

Further development of the proposed method is underway incorporate probabilistic indexes and 

additional realistic factor in DG planning, such as the transmission investment delay and emission 

reduction, into planning objective as well as more advanced reliability assessment. 
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CHAPTER 7. RISK CONTROL IN TRANSMISSION SYSTEM 

PLANNING WITH WIND GENERATORS 
 

1. Background 

 

Wind power generation has drawn much more attention than ever before due to the urgent need for 

environmental protection and the continuous development of new technologies. For example, 

China, as a country with abundant wind power resources, has experienced rapid development in 

recent years in terms of exploiting wind energy for power generation. A large number of wind 

power bases with capacities of 10000 MW has been planned and constructed. It is expected that 

increasing numbers of large-scale wind farms will be connected to the power grids of China. 

 

Although wind power is clean and renewable, wind farms can bring about significant unfavourable 

impacts on power systems due to their stochastic, intermittent and uncontrollable characteristics. 

With the expansion of wind power generation and thus the increasing quota of wind energy in 

power systems, these adverse influences could become technical barriers to wind power integration, 

resulting in new challenges to transmission system planning (TSP) and operation (Salehi-

Dobakhshari and Fotuhi-Firuzabad, 1996; Sayas and Allan, 1996). To address these challenges, new 

approaches should be applied in TSP to facilitate the integration of wind energy through increasing 

the power system‘s ability to defend against the influence. 

 

Till now, research on TSP including large-scale wind farms is still at its early stage. When taking 

into account the uncertainties associated with wind power generation, existing methods only 

evaluate the system reliability and various investment schemes (Billinton and Wangdee, 2007). A 

chance constrained method was proposed to resolve the uncertainties of transmission system 

expansion planning with wind generators. Nevertheless, the cost of computation using the 

convolution integral to calculate the probabilistic power flow was heavy. Accuracy of the model 

was also not assured due to the assumption of the normal distribution of wind power generation. 

Furthermore, the ―N-1‖ reliability constraint was not considered in the planning model (Yu et al., 

2009). A flexible planning method based on multi-scenario probability was proposed in (Yuan et 

al., 2009) to match the transmission system which contains large-scale wind farms. With this 

method, however, the simulation for the operation of a wind farm was only performed using the 

rating power or the zero power of wind generators and is hence unable to accurately describe the 

actual wind power generation. 
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2. The developed method 

 

To overcome the shortcomings discussed above, this chapter presents a probabilistic model for the 

power output of wind generators. The DC probabilistic power flow is calculated with the combined 

use of cumulants and Gram-Charlier series. Three risk-controlling strategies are then introduced to 

enhance the system defense against security risks in allusion to the uncertain factors in TSP, and 

they are: probability of not violating each branch power flow limit (PBL), probability of not 

violating system power flow limit (PSL), probability for the security margin of system power flow 

(PSM). 

 

Based on the above work, a TSP model with risk-controlling strategies is developed for power 

system containing wind generators. A cost-benefit method is utilized to evaluate the planning 

schemes in order to maximize the overall benefit. 

 

3. Case study 

 

The feasibility and effectiveness of the proposed TSP model is illustrated in the case study using 

two typical test systems: an 18-bus system and a 46-bus system, shown in Figures A1 and B1 in the 

appendix (A and B). The parameters of the two test systems are listed in Tables A1 and A2 as well 

as Tables B1 and B2, also included in the appendix. The load and the power generation of the two 

study systems are assumed to follow the normal distribution. The mean values of the power 

generation and the load are assumed to be equal to the expected values and the standard deviation 

equal to 4% of the mean values. These assumptions describe the uncertainties of the power 

generation and load demands.  

 

Suppose that the investment cost of each line is 1.0 million RMB Yuan/km, the outage rate per unit 

length per year is 0.05 times/km for each line, and that the fixing rate of the line is 9.13 10
-4

 year 

per line for each repair. The lower limit lr of the probability for not violating the branch power flow 

limit is set as 0.7. Both the base mode and the ―N-1‖ operation status are investigated in the case 

study. 
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3.1 The 18-bus system 

 

Currently the power system contains ten nodes and nine lines as shown in Fig 7.1 In future, the 

system is planned to expand to 18 nodes, composing 7 generator nodes and 17 load nodes. With the 

added generator nodes 11, 14, 16 and 18, the total load capacity will reach 35870 MW. The 

capacity of generators and loads are listed in Table A1, and the data for all branches are listed in 

Table A2. Suppose that the wind generators are connected to node 2 and their capacity is about 10% 

of that of the system.  

 

a) Analysis of planning results 

The computation time of the planning is 2 minutes and 25 seconds on a PC with Intel Core i3 CPU. 

Three optimal schemes are obtained as listed in Table 7.1, where the numbers enclosed by 

parentheses in the second column denote the numbers of the candidate lines. For example, 1-2(2) 

means two extra lines are to be added to the right-of-way of Line 1-2. 

 

Table 7.1 Comparisons of the three planning schemes for the 18-bus system 

 

Table 7.1 shows that the investment cost of Scheme A is 1.70% more than that of Scheme C, while 

the security risk index R of the former is 7.02% more than that of the latter. Therefore, the cost-

benefit index R C  of Scheme A is higher than that of Scheme C. The investment cost of Scheme B 

is the highest among the three. Compared to Scheme A, the investment of Scheme B is 5.85% 

Scheme Added candidate lines 

Investment cost 

(10
6
 RMB 

Yuan) 

R R C  (× 610 ) 

A 

1-2 (2), 1-11 (2), 4-16 (1), 5-11 (1), 5-12 (1), 6-

13 (1), 6-14 (3),7-8 (2), 7-9 (1), 7-13 (2), 8-9 

(3), 9-10 (3), 9-16 (2), 10-18 (2), 11-12 (1), 11-

13 (1), 12-13 (1), 14-15 (3), 16-17 (1), 17-18 

(4) 

389600.00 1.1510 2.9543 

B 

1-2 (2), 1-11 (2), 2-3 (1), 3-4 (1), 4-16 (2), 5-12 

(2), 6-13 (1), 6-14 (3), 7-8 (2), 7-9 (1), 7-13 

(1), 8-9 (2), 9-10 (4), 9-16 (1), 10-18 (1), 11-12 

(1), 11-13 (1), 14-15 (3), 16-17 (2), 17-18 (3) 

412400.00 1.1678 2.8317 

C 

1-2 (2), 1-11 (2), 4-16 (1), 5-12 (1), 6-13 (2), 6-

14 (3), 7-8 (2), 7-9 (1), 7-13 (2), 8-9 (3), 9-10 

(3), 9-16 (2), 10-18 (2), 11-12 (1), 11-13 (1), 

12-13 (1), 14-15 (3), 16-17 (1), 17-18 (3) 

383100.00 1.0755 2.8074 
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higher, whereas its security risk index is only improved by 1.46%. The higher investment cost of 

Scheme B does not lead to the expected level of security and reliability. In light of the above 

comparisons, Scheme A appears to be the optimal one due to its highest cost-benefit index and the 

best composite beneficial results.  

 

To further verify the validity of the security risk index, the mean power values of generators and 

loads are increased by 7%. The performance of the above three schemes are assessed and compared 

again. The PABL of the three schemes are 78.75 %, 77.87 % and 68.92% respectively. Obviously, 

the lower limit of PABL in Scheme C is violated due to its weak security risk index. As a 

consequence, even a small load fluctuation can cause the system employing Scheme C to violate the 

security/reliability requirements. On the contrary, the higher security risk indexes of Scheme A and 

Scheme B can protect the system against the security risk. 

 

b) Performance comparison with conventional optimal planning schemes 

To verify the feasibility of the proposed TSP model, Scheme A is compared with Scheme D based 

on the investment minimization model. The comparison is shown in Table 7.2, where the minimum 

PBL represents the highest risk of violating the branch power flow limit.   

 

Table 7.2 Comparisons of the optimal planning schemes using the developed model and the 

investment minimization model for the 18-bus system 

Scheme Added candidate lines 

Investment cost 

(10
6
 RMB 

Yuan) 

minimum PBL 

A 

1-2 (2), 1-11 (2), 4-16 (1), 5-11 (1), 5-12 (1), 6-13 (1), 

6-14 (3),7-8 (2), 7-9 (1), 7-13 (2), 8-9 (3), 9-10 (3), 9-16 

(2), 10-18 (2), 11-12 (1), 11-13 (1), 12-13 (1), 14-15 (3), 

16-17 (1), 17-18 (4) 

389600.00 0.8797 

D 

1-2 (2), 1-11 (2), 4-16 (1), 5-12 (1), 6-14 (2), 7-8 (2), 7-

13 (2), 7-15 (1), 8-9 (2), 9-10 (3), 10-18 (1), 11-12 (1), 

14-15 (2), 16-17 (2), 17-18 (1) 

257300.00 0.2616 

 

As shown in Table 7.2, the minimum PBL of Scheme D is only 0.2616, far less than the required 

lower limit (0.70). Compared with Scheme A, scheme D is much less capable of defending against 

the security risk due to neglect of the uncertainties, in spite of its lower investment cost. 

 

c) Power flow analysis with different wind farm characteristics 

To analyse the influence of characteristics of wind farms on the system power flow, five parameters 

reflecting the characteristics of wind farms are adjusted respectively, with each parameter varying 
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in the range of 20% . The parameter adjustment and the influence to Scheme A are shown in Table 

7.3. 

 

Table 7.3 The probability of not violating branch power flow limits 

Characteristics of wind farm Minimum PBL 

Parameter Adjust range Variation Change range 

vci -20%～20% 0.9071～0.8507 3.12%～-3.29% 

 

It is observed that the influence of parameter vci, c and k on power flow is significantly greater than 

that of the other two parameters. According to Table 3, the PBL only fluctuates slightly and still 

meets the specified requirement when the characteristics of wind farms change significantly, 

demonstrating the robust performance of the developed model.  

 

3.2 The 46-bus system 

 

To further verify the feasibility and effectiveness of the proposed model, a 46-bus system is adopted 

in the simulation of the developed model and the investment minimization model. The test system 

represents the southern part of the Brazilian interconnected network, which has 35 nodes and 62 

rights-of-ways as shown in Fig. B1. The system is planned to expand to 46 nodes, including 12 

generator nodes and 19 load nodes. With the added generator nodes 16, 28 and 31, the total load 

capacity will reach 6880.00MW. The capacity of generators and loads are listed in Table B1, and 

the data for all branches are listed in Table B2. In [ROMERO, R., MONTICELLI, A., GARCIA, A. 

(2002)], more detailed data and further explanations for the original system are available. Assume 

that only wind generators are connected to Node 17 and Node 34, and that the capacity of wind 

power generation is about 17.7% of the total capacity of the system. Other characteristics of the 

wind farm are all similar to that of the 18-bus system. The genetic algorithm is adopted and the 

computing time is 23 minutes and 43 seconds with the same PC. The planning results are shown in 

Table 7.4. 

 

Table 7.4 Comparisons of the optimal planning schemes using the developed model and the 

investment minimization model for the 46-bus system 
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Schem

e 
Added candidate lines 

Investment cost 

 ( 310 dollar) 

minimum PBL 

E 

12-14 (2), 19-21 (1), 17-19 (1), 14-22 (1), 22-26 (1), 24-33 

(1), 37-39 (1), 32-43 (1), 42-44 (1), 44-45 (1), 20-21 (3), 42-

43 (3), 14-15 (3), 46-10 (1), 05-11 (3), 46-06 (1), 46-03 (1), 

21-25 (1), 25-32 (1), 31-32 (2), 28-31 (1), 28-30 (1), 26-29 

(1), 28-41 (1), 46-11 (1), 24-25 (3), 29-30 (1), 40-41 (1), 02-

03 (1), 05-06 (1), 09-10 (1) 

462920.00 0.9659 

F 

12-14 (1), 19-21 (1), 17-19 (1), 14-22 (1), 20-21 (2), 42-43 

(3), 14-15 (2), 46-10 (1), 05-11 (2), 46-06 (1), 46-03 (1), 21-

25 (1), 25-32 (1), 31-32 (1), 28-31 (1), 28-30 (1), 26-29 (1), 

28-43 (1), 31-41 (1), 40-45 (1), 46-11 (1), 24-25 (3), 29-30 

(1), 40-41 (1), 02-03 (1), 05-06 (1), 09-10 (1) 

414625.00 0.2526 

 

Scheme E and Scheme F are the optimal planning schemes obtained using the developed model and 

the investment minimization model. It is observed from the table that the investment cost of Scheme 

E is 11.6% higher than that of Scheme F, whereas the minimum PBL of the former is 280% higher 

than that of the latter. Again, the proposed method is much more cost-effective compared to its 

conventional counterparts. As aforementioned, the low cost of the conventional methods is due to 

their negligence of the uncertainties and lack of risk-controlling strategies. 

 

4. Conclusions 

 

This chapter presents a probability model to simulate the uncertainties associated with the power 

output of wind generators integrated into a power system. The probability distribution of the 

branching power flow is obtained by the combined use of cumulants and Gram-Charlier series. This 

analytical approach has the advantages of low computation cost, efficiency and flexibility.  

The two case studies demonstrate that it is possible to achieve a good trade-off among the security, 

reliability and economics of TSP schemes by employing risk-controlling strategies. Consequently, 

the security risks of a system associated with the uncertainties due to wind generators can be 

controlled using the developed TSP model. 
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CHAPTER 8. GENERATION SCHEDULING WITH FLUCTUATING 

WIND POWER 

 

A stochastic optimization approach is proposed for the unit commitment problem with the 

uncertainty of wind power generation taken into account, based on mixed-integer linear 

programming (MILP). The problem is formulated to minimize the total operating cost of thermal 

units. In considering wind power generation, scenarios are generated by time series model ARMA 

and Latin Hypercube sampling (LHS) and the stochastic optimization problem is then transformed 

to a deterministic one. A large number of scenarios lead to computing complexity. Scenario 

reduction technology is introduced to decrease scenario number in order to reduce computing cost. 

The proposed formulation is tested on a ten-unit system and a 100-unit system. Simulation results 

show that the varying wind power generally leads to the increase of the total cost. In addition, the 

ramping rates of non-wind generators and the prediction precision of wind power are significant in 

making generation scheduling with volatile wind power generation. Moreover, the system operation 

cost decreases significantly if wind power is considered a spinning reserve resource. 

 

  Nomenclatures 

A.   Indices 

S The set of the wind power generation scenarios. 

T The set of the time periods. 

B.  Parameters 

A i
 The coefficient of the piecewise linear production cost function of unit i 

ia , 
ib , 

ic  The coefficients of the quadratic production cost function of unit i. 

,i hotC , ,i coldC , cold

it  The coefficients of the startup cost function of unit i. 
sd

iC  The shutdown cost of unit i. 

( )D t  The load demand in period t. 

iDT  The minimum down time of unit i. 

DT i(0) The number of periods unit i has been offline prior to the first period of the 

time span (end of period 0). 

, ( )l iF t  The slope of block of the piecewise linear production cost function of unit i. 

iG  The number of periods unit i must be initially online due to its minimum up 

time constraint. 

iK t  The cost of the interval t of the stairwise startup cost function of unit i. 

iL  The number of periods unit i must be initially offline due to its minimum 

down time constraint. 
NG  The number of non-wind units. 
NT  The number of periods under study (24 h). 

NW The number of wind power units. 

iND  The number of intervals of the stairwise startup cost function of unit i. 
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iNL  The number of segments of the piecewise linear production cost function of 

unit i. 

,maxiP  The active capacity of unit i. 

,miniP  The minimum active power output of unit i. 

( )s

iP t  The simulated generation of power unit at time t in scenario s. 
, ( )W f

iP t  The forecasted generation of wind power unit at time t. 
, ( )W s

iP t  The simulated generation of wind power unit at time t in scenario s. 

( )R t  The spinning reserve requirement in period t. 

RDi The ramp-down limit of unit i. 

RUi The ramp-up limit of unit i. 

SDi The shutdown ramp constraint of unit i. 

SUi The startup ramp limit of unit i. 

,l i  The upper limit of block of the piecewise linear production cost function of 

unit i. 

UTi The minimum up time of unit i. 

UTi(0) The number of periods unit i has been online prior to the first period of the 

time span (end of  period 0). 
(0)iu  The initial commitment state of unit i (1 if it is online, 0 otherwise). 

i
 The permissible active power adjustment of unit i. 

C.  Variables 

d

iC t  The shutdown cost of unit i in period t. 
p

iC t  The production cost of unit i in period t. 
u

iC t  The startup cost of unit i in period t. 

( )ip t  The power output of unit i in period t. 

( )iP t  The maximum available power output of unit i in period t. 

( )off

it t  The number of periods in which unit i has been offline prior to the startup in 

period k. 
( )iu t  The binary variable that is equal to 1 if unit i is online in period t and 0 

otherwise. 

, ( )l i t  The power generated in block of the piecewise linear production cost function 

of unit i in period t. 

 

1. Introduction  

 

Mitigating emissions of greenhouse gases causing global warming is currently one of the most 

pressing issues facing the electricity generation sector in industrialized countries. To that end, 

several continental European countries, most notably Denmark, Germany, and Spain, are increasing 

the level of penetration of renewable and low carbon electricity generation resources, and wind 

power generation (WPG) is the primary resource of this kind. The United Kingdom, although 

lagging its continental counterparts, is committed to cover 10% of its electricity demand from 

renewable resources by 2010 and reach the 20% mark by 2020 (Department of Trade and Industry 

of UK, 2003). In North America, although federal authorities in both the United States and Canada 

have been less proactive in the reduction of greenhouse gas emissions (Congress of the United 
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States of America, 2005, Government of Canada), several state and provincial jurisdictions have 

taken steps to increase the penetration of WPG and other renewable generation technologies 

(Bouffard and Galiana, 2008). 

 

Wind power forecasting and associated forecasting accuracy issues are important in analyzing the 

impact of wind power on power system operations. Several investigations have looked at the 

prediction of wind speed for use in determining the available wind power. These investigations 

have been based on foundations such as fuzzy logic, neural networks, and time series (Hetzer et al., 

2008). Although many prediction techniques are used to promote prediction accuracy, it cannot be 

forecasted without any error. Hence, the variation of wind power cannot be neglected. 

 

Current generation scheduling cannot fully integrate the most essential features of non-dispatchable 

generation technologies like wind power. This limitation is becoming an issue for grid operators as 

there is increasing public and political pressure to increase the penetration of renewable generation 

technologies, which depend on randomly-varying weather conditions. Existing generation 

scheduling is however generally based on deterministic models and usually ignores the likelihood 

and the potential consequences of the random contingencies. Because of this limitation, this chapter 

proposes a generation scheduling suitable for fluctuating wind power, which is also applicable to 

other forms of renewable power generation.  

 

The probabilistic approach is suitable for the modelling and prediction of varying wind power 

generation. In (Carpentier et al., 1996, Samer et al., 1996), scenario trees are developed to solve unit 

commitment problems when demand is not certain. In (Ummels et al., 2007), a simulation method, 

which was based on wind speed time series for dealing with volatile wind generation, employed the 

security-constrained economic dispatch algorithm which was further developed to investigate the 

impact of wind power on thermal generation unit commitment and dispatch. A stochastic model 

was introduced in (Barth et al., 2006) for evaluating the impact of integration of large amounts of 

intermittent wind power. However, the approach assumed that the generation unit status was 

already known. A security-constrained unit commitment algorithm which took the intermittency 

and volatility of wind power generation into account was presented in (Wang et al., 2008).. 

However, the algorithm requires a very high level of computing time and it seems that there is no 

practical application value for this algorithm. 

 

The stochastic unit commitment problem is usually solved using the deterministic unit commitment 

algorithms. Due to developments in the last several decades, some solution techniques such as 

heuristics, dynamic programming, mixed-integer linear programming (MILP), Lagrangian 

relaxation (LR), simulated annealing, and evolution-inspired approaches (Carrión and Arroyo, 
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2006) have been proposed. A recent extensive literature survey on unit commitment can be found in 

(Padhy, 2004). MILP and LR are the most widely used. However, the benefits of the MIP 

formulation compared to the LR include: 1) Global optimality, 2) a more accurate measure of 

optimality, 3) improved modelling of security constraints, and 4) enhanced modelling capabilities 

and adaptability. Use of the MIP formulation to solve the Unit Commitment problem opens up 

many opportunities to deal directly with a number of constraints and models that tend to be very 

difficult to implement with the LR formulation. These include modelling of combined cycle plants, 

hydro unit commitment, forbidden zones, multi-area and zonal constraints, ancillary service 

markets, and many more (Streiffert et al., 2005). Hence, the MIP is utilized to solve the proposed 

optimization problem.  

 

The rest of this chapter is organized as follows. Section 2 provides the basic mathematical model of 

MILP-UC. Section 3 presents the scenario generation and reduction. Section 4 proposes the 

formulation of UC with wind power. Two UC models considering varying wind power are detailed 

in section 5. The conclusions are clarified in section 6. 

 

2. The MILP-UC Formulation 

 

In this section, a mixed-integer linear formulation for cost-based unit commitment problem is 

described, which was initially proposed in (CARRIÓN and ARROYO, 2006). 

 

2.1 The Objective Function 

1 1

NG NT
p u d

i i i

i t

Minnimize C t C t C t                                            (1) 

The three components in Eqn. (1) are explained in the following. 

 

1) The production cost 

The quadratic generation production cost function typically used in scheduling problems can be 

formulated as 

2( ) ( ) ( )p

i i i i i i iC t a u t b P t c P t                                                                     (2) 

 

As shown in Fig 8.1, the quadratic function can be approximated by a set of piecewise blocks.  
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Pi,min Pi,max Pi(t)

A(i)

Ci 
p(t)

Fl,i

δl,i(t)

 

Fig 8.1  The piecewise linear energy cost function 

 

, ,

1

A ( ) ( ) ( )
iNL

p

i i i l i l i

l

C t u t F t t                     (3) 

Where 2

,min ,minAi i i i i ia b P c P  

,min ,

1

( ) ( ) ( )
iNL

i i i l i

l

P t P u t t                               (4) 

1, 1, ,min( )i i it P                                           (5) 

, , 1,( )l i l i l it                                               (6) 

, ,max 1,( ) ( )
i iNL i i NL it P t                               (7) 

, ( ) 0l i t                                                         (8) 

 

2) The startup cost 

The discrete startup cost can be modelled as a stairwise function. 

,

,

, ( )

, ( )

off cold

i hot i i iu

i off cold

i cold i i i

C if t t t DT
C t

C if t t t DT
 

  

In this work, only two situations, i.e. cold start and hot start, are considered. 

 

1

[ ]
k

u

i i i i

n

C t K k u t u t n                  (9) 

0u

iC t                                                        (10) 

Where ,

,

, 1, ,

, 1, ,

cold

i hot i i

i cold

i cold i i i

C if k t DT
K k

C if k t DT ND
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3) The shutdown cost 

The shutdown cost is typically formulated as a constant. Similar to the startup cost, it can be 

modelled as follows: 

[ ( 1) ( )]d sd

i i i iC t C u t u t                            (11) 

0d

iC t                                                        (12) 

 

2.2 The Operating Constraints of Units 

 

1) Generation limits and ramping constraints 

The generation limits of each unit in each period are set as follows: 

        ,min ( ) ( ) ( )i i i iP u t P t P t                                  (13) 

,max0 ( ) ( )i i iP t P u t                                     (14) 

The ramp-up and startup ramp rates are limited by the following: 

,max

( ) ( 1) ( 1) [ ( ) ( 1)]

[1 ( )]

i i i i i i i

i i

P t P t RU u t SU u t u t

P u t
      (15) 

,max( 1) [ ( 1) ( )] ( )i i i i i iP t SD u t u t P u t                (16) 

The ramp-down limits are imposed on the power output: 

,max

( 1) ( ) ( ) [ ( 1) ( )]

[1 ( 1)]

i i i i i i i

i i

P t P t RD u t SD u t u t

P u t
           (17) 

 

2) The minimum up and down time constraints 

The minimum up and down time constraints: 

1

[1 ( )] 0
iG

i

t

u t                                        (18) 

1

( ) [ ( ) ( 1)]
it UT

i i i i

n t

u n UT u t u t                (19) 

[ ( ) ( ) ( 1)] 0
NT

i i i

n t

u n u t u t                  (20) 

Where min ,[ 0 ] 0i i i iG NT UT UT u  

 

The minimum up and down time constraints: 

1

( ) 0
iL

i

t

u t                                              (21) 
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1

[1 ( )] [ ( 1) ( )]
it DT

i i i i

n t

u n DT u t u t        (22) 

[1 ( ) ( ) ( 1)] 0
NT

i i i

n t

u n u t u t             (23) 

Where min ,[ (0)][1 0 ]i i i iL NT DT DT u  

 

2.3 The Power Balance Constraints 

The active power balance or system equality constraint can be expressed as 

1

( ) ( )
NG

i

i

P t D t                                        (24) 

2.4 The Spinning Reserve Constraints 

 ,max

1

( ) ( ) ( )
NG

i

i

P t D t R t                          (25) 

Note that there is only one type of binary variables in this model, namely state variables used to 

describe the on/off state of units. This is the key point that is different from other MILP-UC 

algorithms and the major reason why this algorithm can decrease the computing time.  

 

3. Scenario Generation and Reduction 

 

3.1 The Wind Power Prediction 

 

Wind power depends on weather condition and always fluctuates. Therefore, it is necessary to 

predict the electricity generated and demanded for the next hours to days ahead accurately and 

reliably for the integration of large amounts of wind power into the electricity supply system. For 

power plant scheduling and electricity trading the ―day-ahead‖ prediction of demand is used; for 

grid operation, short-term forecasts are crucial (Pappala et al., 2009). In (Yan et al., 2009), the 

impact of the prediction error of wind power on unit commitment has been researched. Similar 

results will be illustrated in this chapter.  

 

In (Giebel, 2003), the use of wind speed forecast with subsequent conversion to power offers no 

advantage over direct wind power prediction. It is found that two-stage modelling (conversion of 

wind speed predictions to wind power in which correlation structure in power measurements is 

disregarded) is inferior to models that take the power correlation into account (Giebel, 2003). Thus 

using direct wind power prediction might be more advantageous as it leads to higher forecast 
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accuracy. Moreover, the level of error would be notably lower if we were considering an 

aggregation of wind farms, or a complete region, thanks to smoothing effects (Focken et al., 2001). 

 

The autoregressive moving average ARMA approach is selected here because it is a powerful, well-

known time-series technique and has been used by the California Independent System Operator in 

some of its forecasting work (Milligan et al., 2003). Interested readers can consult (Box and 

Jenkins, 1976) for details. The ARMA model can be described as follows: 

 

1 1 1 1 1t t t p t t q t qX X X  

 

where p is the order of the autoregressive process of X on itself, and q is the order of the moving-

average error term. The equation states that a realization of the time-series X at time t depends on a 

linear combination of past observations of X plus a moving average of series , which is the white 

noise process 2~ 0,N  with zero mean and variance 2 .  Parameters of ARMA can be 

estimated from historical data. 

 

3.2 The  Sampling Technology 

 

The well-established Monte Carlo method usually generates a large number of scenarios subject to a 

normal distribution as well as other distributions. Due to the large number of samples typically 

required, Monte Carlo simulation and optimization is often time consuming. There have been 

several efforts to reduce the number of samples required. One popular method is Latin Hypercube 

sampling, which was initially proposed by (Mckay et al., 1979).  

 

The improvement offered by LHS over Monte Carlo can be easily demonstrated. Fig 8.2 above 

compares the results obtained by sampling from a normal distribution N ~ (100,100) with LHS and 

Monte Carlo sampling (Wang et al., 2008). Both simulations are conducted for 3000 samples. As 

shown in Fig 8.2, LHS can approximate the required normal distribution much better than the 

simple Monte Carlo method (Wang et al., 2008). It should be noted that LHS yields a stratified 

sample of the data, so the variance of a sample from this technique is considered smaller than that 

from MC (Jirutitijaroen and Singh, 2008). The detailed simulation results can be found in 

(http://www.vosesoftware.com/ModelRiskHelp/index.htm#Monte_Carlo_simulation/Latin_Hyperc

ube_sampling.htm.). 

 

http://www.vosesoftware.com/ModelRiskHelp/Monte_Carlo_simulation/Monte_Carlo_sampling.htm
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MCS                                                        LHS 

Fig 8.2 The normal distribution fit by simple MCS and LHS 

3.3 The Scenario Generation 

 

Each scenario is assigned a probability, that is, one divided by the number of generated scenarios. 

In each scenario, an hourly random wind power generation is considered which is based on the 

forecasted wind power generation. (Kaut and Wallace, 2007) listed different scenario generation 

and reduction algorithms. In (Domenica et al., 2007) the general steps to generate scenarios can be 

found. The definition, goals methods of scenario generation and measuring quality of scenario trees 

are introduced in (Kaut, 2006). 

 

As the focus of this chapter is not on the wind power forecasting, a wind power forecast is assumed 

to be available and ARMA(1, 1) model for wind power forecast error developed,  which is used to 

predict wind speed in (Söder, 2004).  

 

The white noise is generated by LHS, then the set of wind power forecast error scenarios can be 

generated by the ARMA(1, 1) model. A scenario fan is generated based on this model, and the 

process is shown in Fig 8.3. 
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Fig 8.3 The schematic depiction of the generation of a scenario fan 

 

3.4 The Scenario Reduction 

 

The  total  number  of  scenarios  has  a  double  exponential  dependency in the sense that a model 

with m stages, and n scenarios at  each  stage  leads  to  a model with  a  total  of  mn   scenarios. 

Due to the computational complexity, it is necessary to reduce the scenarios such that its stochastic 

properties are not changed significantly. There are two main methods to reduce scenarios, namely 

moment matching (Hoyland and Wallace, 2001, Hoyland et al., 2003) and scenario reduction 

(Gröwe-kuska et al., 2003, Römisch and Heitsch, 2003, Dupačová, 2003). If the model demands 

small scenario tree sizes, moment matching then leads to better results, while for larger tree sizes, 

scenario reduction is more promising (Hasche, 2008). 

 

In view of the computing expense of large-scale UC formulation, the scenario size must be very 

small. Hence, moment matching is used to reduce scenarios. Moment matching is based on the 

following parameters: mean values, standard deviations, skewness, kurtosis.  

 

These four moments are examined for each scenario. If the four moments of a scenario match the 

corresponding four moments for the historical data, the scenario is accepted as a valid scenario; 

otherwise, it is deleted. In this way, the collection of all generated scenarios can be reduced to a 

practical manageable size (Zhou et al., 2009).  
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4. Generation Scheduling with Wind Power 

 

Assume that the wind power is dispatched, no matter how much and when the wind power is 

generated. In this chapter, the variance of demand prediction is not taken into account. 

 

There are two methods to incorporate the wind power into unit commitment. One is to take into 

account the wind power as a constant. In other words, the wind power can be forecasted without 

errors. The other one is the stochastic approach. The two strategies are presented as follows. 

Uncertainties are observed in wind power generation and a stochastic approach is most suitable for 

the modeling of generation. It is natural to transform a stochastic approach to a deterministic 

problem in the solving process.  

4.1 The Deterministic Model 

 

The wind power is taken as a constant in this strategy. In this case, the only difference from the 

traditional UC model is the power balance constraints. 

 

,

1 1

( ) ( ) ( )
NG NW

W f

i i

i i

P t P t D t                           (26) 

 

In this case, Eqn. (24) are replaced by Eqn. (26).  The basic assumption in the deterministic model 

is that wind power is predicted without any error. 

 

4.2 The Stochastic Model 

 

Fig 8.4 shows the framework of the stochastic unit commitment. Historical data is used to estimate 

the parameters in the ARMA model and it is the so called preprocessed process. Scenarios 

generated by the ARMA approach, LHS introduced in section 2 and scenario reduction technology 

are also used to reduce the scenario number with the consideration of the computing complexity. 

Integrating the scenario data to MIP UC model is a key step to optimize the solution, because the 

solution must satisfy all the constraints involving any scenario data. 
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Fig 8.4 The Framework of the Stochastic Unit Commitment 

 

Eqn. (24) is replaced by Eqn. (28). In each scenario, the simulated wind power takes in the place of 

the forecasted wind power. Eqn. (29) represents extra ramping constraints, which are the significant 

differences between the stochastic model and the deterministic model. 

 

,

1 1

( ) ( ) ( )
NG NW

s W s

i i

i i

P t P t D t                             (27) 

,min ,max( ) ( ) ( )s

i i i i iP u t P t P u t                            (28) 

( ) ( )s

i i i iP t P t                                  (29) 

 

In the day-ahead unit commitment the solutions are produced in the deterministic model based on 

the mean wind power in each hour. In an hour, the wind power is likely to fluctuate rather than keep 

constant. In order to keep the system stable, real time dispatch acts. However, the generation 

scheduling results, obtained by the day-ahead unit commitment, may be impossible to correct with 

the real time dispatch for the ramping limits of non-wind units. Hence, the constraints (29) are 

added in the stochastic model to make sure that the fluctuation of wind power can be made up by 

non-wind units. In this chapter, permissible real power adjustment 
i
 denotes 10 minutes ramping 

of unit i. 

 

5. Case Studies 

 

A ten-unit system and a 100-unit system are used for testing the proposed algorithm considering the 

uncertainty of wind power generation. The impact of large-scale integration of wind power to 

power system is analyzed based on economic indices such as operation costs and system security.  

 

Table 8.1 System Data 1 

Units 
Pmax 

(MW) 

Pmin 

(MW) 

Ton 

(h) 

Toff 

(h) 

IniState 

(h) 

1 455 150 8 8 8 

2 455 150 8 8 8 
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3 130 20 5 5 -5 

4 130 20 5 5 -5 

5 162 25 6 6 -6 

6 80 20 3 3 -3 

7 85 25 3 3 -3 

8 55 10 1 1 -1 

9 55 10 1 1 -1 

10 55 10 1 1 -1 

 

5.1 A 10-unit System 

 

In this study, a 10-generator system was used for test purposes. The data of the ten-unit system of 

(Barth et al., 2006) is provided in Tables 8.1-8.3. Without the consideration of transmission 

constraints, a single wind unit can represent all the wind generators and the forecasted wind power 

is shown in Table 8.3. A spinning reserve requirement of 10% of the load demand has to be met in 

each of the 24 hourly periods in which the time span is divided. The ramping of all non-wind units 

is assumed to be the same at180 MW/hour.  

 

Table 8.2 System Data 2 

Units 
a 

($/h) 

b 

($/MWh) 

c 

($/MW
2
h) 

hc 

($/h) 

cc 

($/h) 

tcold 

(h) 

1 1000 16.19 0.00048 4500 9000 5 

2 970 17.26 0.00031 5000 10000 5 

3 700 16.6 0.00200 550 1100 4 

4 680 16.5 0.00211 560 1120 4 

5 450 19.7 0.00398 900 1800 4 

6 370 22.26 0.00712 170 340 2 

7 480 27.74 0.00079 260 520 2 

8 660 25.92 0.00413 30 60 0 

9 665 27.27 0.00222 30 60 0 

10 670 27.79 0.00173 30 60 0 

 

Table 8.3 System Data 3 

Hour Load 

(MW) 

P
w,f

 

(MW) 

Hour Load 

(MW) 

P
w,f

 

(MW) 

1 700 190 13 1400 390 

2 750 300 14 1300 340 

3 850 330 15 1200 320 

4 950 360 16 1050 120 

5 1000 350 17 1000 10 

6 1100 370 18 1100 40 
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7 1150 440 19 1200 50 

8 1200 460 20 1400 20 

9 1300 350 21 1300 5 

10 1400 250 22 1100 250 

11 1450 420 23 900 350 

12 1500 380 24 800 240 

 

The model has been implemented on a PC with the AMD Sempron 2800+ and 512 MB of RAM 

memory using CPLEX 10.1 to solve the proposed formulation.  

 

Table 8.4 Generation Scheduling with Forecasted Wind Power 

Hour Units 

 1 2 3 4 5 6 7 8 9 10 

1 180 150 69 86 25 0 0 0 0 0 

2 235 150 20 20 25 0 0 0 0 0 

3 305 150 20 20 25 0 0 0 0 0 

4 375 150 20 20 25 0 0 0 0 0 

5 432 153 20 20 25 0 0 0 0 0 

6 449.67 208 20 27.333 25 0 0 0 0 0 

7 382 263 20 20 25 0 0 0 0 0 

8 455 208 20 32 25 0 0 0 0 0 

9 455 263 71.333 90.667 25 20 25 0 0 0 

10 455 355 130 130 25 20 25 10 0 0 

11 455 263 100.67 121.33 25 20 25 10 10 0 

12 455 305 130 130 25 20 25 10 10 10 

13 455 258 89 108 25 20 25 10 10 10 

14 455 243 81.333 100.67 25 20 25 10 0 0 

15 455 150 107.33 122.67 25 20 0 0 0 0 

16 455 190 130 130 25 0 0 0 0 0 

17 455 250 130 130 25 0 0 0 0 0 

18 455 320 130 130 25 0 0 0 0 0 

19 455 410 130 130 25 0 0 0 0 0 

20 455 455 130 130 155 20 25 10 0 0 

21 455 455 130 130 70 20 25 10 0 0 

22 455 285 20 20 25 20 25 0 0 0 

23 340 165 0 0 25 20 0 0 0 0 

24 390 150 0 0 0 20 0 0 0 0 

 

1) The Deterministic Model 

 

In this case, wind power is assumed to be forecasted without error. Hence, this is equivalent to the 

situation that the actual load demand subtracts a certain amount of wind power. Eqns. (1)–(23) and 

(26) constitute the deterministic MILP-UC model, whose results are given in Table 8.4. The 
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cheapest Unit 1，Unit 2 are committed during this decision period without any doubt. Unit 5 is also 

very cheap and not committed in the last hour. Unit 3 and Unit 4 are both committed between hour 

1 and hour 23. Unit 8 – Unit 10 are the most expensive units, so they are committed only for a few 

hours. The total operation cost is $470586.04. The model contains 9845 constraints, 5041 variables, 

240 binary variables and the solving time is 2.09 seconds.  

 

2) The Stochastic Model 

 

In this case, it is supposed that the white noise process of ARMA(1,1) model proposed in section 

4.3 obeys a normal distribution with the standard deviation of 10%. According to scenario reduction 

technology, 1000 scenarios are generated for each hourly wind power by LHS introduced in section 

IV. Only ten scenarios remain after moment matching, as shown in Table 8.5.  

 

Eqns. (1)-(25), (27)-(29) constitute the stochastic MILP-UC model, whose results are given in Table 

8.6. According to Table 8.5 and Table 8.6, the generation scheduling results of most non-wind units 

keep steady. The outputs of non-wind units, which are different from those of the deterministic 

model, are marked in shadow. 

 

Table 8.5 Scenarios Generated 

Hour 
Wind power scenarios 

1 2 3 4 5 6 7 8 9 10 

1 182.07 167.39 206.13 197.64 175.03 203.44 160.13 215.57 188.35 190.91 

2 315.78 286.13 341.13 329.1 281.87 313.69 269.84 303.03 252.85 294.19 

3 329.79 361.58 332.04 288.57 343.73 286.63 318.39 379.77 350.21 311.83 

4 369.61 322.15 274.8 366.26 333.11 385.62 408.29 359.38 348.39 395.44 

5 402.17 371.06 341.74 288.12 382.87 324.87 357.33 316.98 360.58 337.42 

6 354.13 315.78 323.39 394.07 418.13 344.88 371.26 387.04 367.74 402.5 

7 466.84 403.36 395.15 454.12 443.66 382.86 488.53 439.09 550.32 419.91 

8 464.3 382.94 421.46 480.2 514.5 441.41 537.2 414.4 498.27 456.06 

9 305.61 405.11 370.71 324.98 334.28 392.02 355.15 367.66 342.18 275.63 

10 248.02 192.02 238.63 255.35 258.19 264.26 230.83 217.99 275 294.95 

11 494.84 384.84 457.07 439.81 380.84 417.4 407.46 450.56 426.27 345.28 

12 361.18 337.57 388.34 318.47 400.28 375.24 446.66 389.74 415.25 348.25 

13 334.15 350.13 422.33 426.64 359.23 453.53 398.44 402.15 385.62 378.44 

14 346.37 351.02 330.85 294.13 387.44 317.48 369.74 358.85 308.79 332.49 

15 300.99 350.73 337.15 332.97 310.44 316.81 367.93 324.14 270.71 285.95 

16 121.54 116.48 106.76 96.936 119.99 130.49 138.06 129.89 112.09 125.73 

17 9.6226 10.044 7.8299 11.302 10.579 11.143 9.9483 10.271 9.3587 9.1359 

18 36.571 52.929 39.175 37.999 36.989 34.369 44.632 42.215 41.235 40.825 
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19 55.17 52.535 61.054 43.528 43.947 53.195 49.574 50.394 47.06 48.431 

20 18.687 19.318 21.5 20.123 19.791 20.532 15.728 21.759 18.127 23.249 

21 4.8292 5.3131 4.6791 6.1619 5.0676 4.93 5.2196 5.4909 4.4765 4.2588 

22 259.88 249.17 200.52 280.2 233.68 250.88 291.94 268.58 228.37 239.3 

23 353.25 382.96 332.1 412.56 367.66 322.17 298.49 312.91 343.09 378.59 

24 229.88 227.13 270.43 275.03 240.69 210.08 234.39 247.61 257.13 188.88 

 

The total operation cost increases 0.01% to $470633.3167. It is shown by simulation results that the 

expected schedule cost under stochastic programming is generally more than that under the 

deterministic model. The difference in operating costs between the stochastic model and the 

deterministic model ($470633.3167–$470586.0391= $47.2776) is the cost of maintaining the 

system security when considering the variation of wind power. Compared to the security of the 

system, the extra cost is insignificant, since the cost can be easily compensated for by the benefit 

brought by the security of system and policy inclination. The stochastic model contains 19685 

constraints, 7441 variables, 240 binary variables and the solving time is 5.8 seconds.  

 

Table 8.6 Generation Scheduling with Varying Wind Power 

Hour Units 

1 2 3 4 5 6 7 8 9 10 

1 180 150 69 86 25 0 0 0 0 0 

2 223.87 150 20 31.13 25 0 0 0 0 0 

3 285.23 150 20 39.77 25 0 0 0 0 0 

4 356.71 150 20 38.29 25 0 0 0 0 0 

5 412.83 153 20 39.17 25 0 0 0 0 0 

6 449.67 208 20 27.333 25 0 0 0 0 0 

7 331.68 263 40.32 50 25 0 0 0 0 0 

8 449.8 208 20 37.2 25 0 0 0 0 0 

9 455 263 71.333 90.667 25 20 25 0 0 0 

10 455 355 130 130 25 20 25 10 0 0 

11 455 263 100.67 121.33 25 20 25 10 10 0 

12 455 305 130 130 25 20 25 10 10 10 

13 455 258 89 108 25 20 25 10 10 10 

14 455 243 81.333 100.67 25 20 25 10 0 0 

15 455 150 107.33 122.67 25 20 0 0 0 0 

16 455 190 130 130 25 0 0 0 0 0 

17 455 250 130 130 25 0 0 0 0 0 

18 455 320 130 130 25 0 0 0 0 0 

19 455 410 130 130 25 0 0 0 0 0 

20 455 455 130 130 155 20 25 10 0 0 

21 455 455 130 130 70 20 25 10 0 0 

22 455 285 20 20 25 20 25 0 0 0 

23 322.44 180 0 0 25 22.56 0 0 0 0 

24 384.97 155.03 0 0 0 20 0 0 0 0 
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3) Ramping Capabilities of Non-Wind Units and the Prediction Error of Wind Power 

 

To show the impact of precision of wind power prediction, the standard deviation increase from 5% 

to 35% of the forecasted value with the ten-minutes ramping rate of non-wind units of 30MW/10-

minute and the results are shown in Table 8.7. The security cost is defined as the difference between 

the operation cost with predicted wind power and that with variable wind power. The security cost 

in the fourth column reflects the cost of maintaining the security of the system when the wind 

power is uncertain. As shown in the table, the more accurate the prediction level is, the more the 

security costs needed to be paid. 

 

The ramping requirements of non-wind units are strongly associated with the prediction errors of 

wind power. The results of increasing the ten-minutes ramping rate of non-wind units from 30 

MW/10-minute to 50 MW/10-minute are shown in Table 8.8. The tolerance range of the volatility 

of wind power expands as the ramping capabilities increase, and vice versa. Owing to the faster 

ramping, the standard deviation of forecasted wind power is allowed to be 30%. Another benefit of 

faster ramping is that the cost to maintain the system in a secure and reliable state decreases. 

 

Table 8.7 The Impact of Prediction Errors 

Standard Deviation Feasible/ Infeasible Operation Cost ($) Security Cost ($) 

0 feasible 470586.0391 0 

5% feasible 470589.3508  3.3117 

10% feasible 470633.3167 47.2776 

15% feasible 471859.8933  1273.854 

20% feasible 482084.2494 11498.21 

25% feasible 486160.5988 15574.56 

30% Infeasible / / 

35% Infeasible / / 

 

Table 8.8 The Impact of Ramping on Prediction Errors 

Standard Deviation Feasible/ Infeasible Operation Cost ($) Security Cost ($) 

0 feasible 470586.0391 0 

5% feasible 470586.1657  0.1266 

10% feasible 470633.3167 47.2776 

15% feasible 470643.4630 57.4239 

20% feasible 474885.6065  4299.567 

25% feasible 475380.9308  4794.892 

30% Infeasible     

35% Infeasible / / 
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4) Wind power as spinning reserve resource 

 

Usually, wind power is not considered as a resource to supply spinning reserve, so spinning reserve 

of a power system is given by traditional power, etc. thermal plant, as shown in equation (25). With 

the development of wind power prediction technology and the increase of wind power installed 

capacity, it is necessary to consider wind power as offering a certain share of spinning reserve. 

Given this condition, wind power is looked upon as reliable power, which can give electricity 

assistance to satisfy the demand in order to keep the power system stable.  

 

,

,max

1

( ) ( ) ( ) ( )
NG

W f

i i

i

P t P t D t R t                    (30) 

 

Table 8.9 Total Operating Costs under Different Spinning Reserve Constraints 

/ Non-Wind spinning reserve($) Wind spinning reserve($) 

The deterministic model 470586.0391 427893.6444 

The stochastic model 470633.3167 431076.5314 

 

The deterministic model and stochastic model can be reformed, if equation (25) is replaced by 

equation (30).  Table 8.9 shows the total operation cost under different spinning reserve constraints. 

It is obvious that the total operation cost decreases when wind power is considered as a spinning 

reserve source. Similar to case 1, case 2 and case 3, security costs also need to be paid if the wind 

power is volatile.  

5.2 A 100-unit System 

 

The 100-unit system is generated by replicating the ten-unit system above ten times. A spinning 

reserve requirement of 10% of the load demand has to be met in each of the 24 hourly periods. The 

total installed wind power capacity is 10 times as big as that in the former system. In CPLEX, an 

optimality parameter can be specified to decide whether to find the optimal solution or to quickly 

obtain a suboptimal solution. In this case study, the execution of CPLEX was stopped when the 

value of the objective function was within 0.5% of the optimal solution (Carrión and Arroyo, 2006).  

 

Best Integer-Best LP
The MIP Gap = (  100 %

Best LP
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The MIP Gap provides a good measure of optimality that can be considered as convergence criteria 

in (STREIFFERT et al, 2005). The deterministic model contains 98009 constraints, 50401 variables, 

2400 binary variables. The MIP Gap in this model is 0.41% and the total cost is $4678421.242, 

which costs 125.8 seconds. The stochastic model contains 194249 constraints, 74401 variables, 

2400 binary variables. The MIP Gap in this model is 0.45% and the total cost is $46810404.35, 

which costs 184.6 seconds. 

 

6. Conclusions 

 

A stochastic optimization approach is proposed for the unit commitment problem considering the 

uncertainty of wind power generation, based on the mixed-integer linear programming (MILP). The 

problem is formulated as minimizing the total cost of thermal units. To consider wind power 

generation, scenarios are generated using scenario generation techniques. The stochastic problem is 

hence transformed to a deterministic one. 

 

Since LHS produces a stratified sample of the data, the variance of samples from LHS is smaller 

than that from simple Monte Carlo sampling. Time series model ARMA generates a fan with the 

white noise process which is implemented by LHS. In order to tackle the problem of a huge number 

of scenarios, scenario reduction technology is introduced. The MILP-UC algorithm developed is 

efficient, and scenarios reduction technology gives the possibility to explore a practical algorithm 

for considering varying wind power generation. 

 

A 10-unit system and 100-unit system are employed for demonstrating the proposed model and 

method. It is shown by simulation results that the expected scheduling cost by using stochastic 

programming is generally more than that using the deterministic model. This is because the 

stochastic model took into account the situation that the thermal units cannot meet the prediction 

error in time caused by the variation of wind power. Hence, the ramping capabilities of units and 

prediction accuracy of wind power are crucial when wind power varies. 
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CONCLUDING REMARKS 

 

The research outcomes presented in this report cover the wind power forecasting, optimal siting and 

sizing of DGs, risk control in transmission system planning with wind generators, generation 

scheduling with wind generators, as well as the greenhouse gas abatement effect. The reported 

research is comprehensive and involves the planning and operation aspects associated with DGs. 

 

The following research outcomes have been achieved: 

1. An algorithm is developed for the calculation of the life cycle cost (LCC) and green house gas 

abatement. The algorithm determines the most economical and environmentally friendly hybrid 

DG unit combination that can be accommodated to an active distribution network. The 

algorithm offers the most beneficial distributed generation unit mix and their capacities 

respective to the geographical location of the system. The software program was developed and 

scripting the algorithm using IPLAN subroutines to work in conjunction with PSS®E software. 

The program facilitates to differentiate the LCC benefits, GHG emission levels, and combined 

effects. Such options are vital in trading off the business objectives of distributed energy 

business. 

2. A RBF neural network based prediction model is developed based on the wind speed, 

temperature, and historical wind generator outputs. Prediction is conducted using the real 2009 

annual data from a wind farm in Guangdong, China. The prediction achieved high accuracy 

with the prediction error below 10% most of the time. The simulation shows that the 

exceptional data must be eliminated in wind power forecasting in order to achieve higher 

precision of prediction. Although some progress achieved, wind power forecasting is still an 

issue not well solved. 

3. For the optimal siting and sizing problem, much research work is presented in this report 

including a Modified Primal-Dual Interior Point Algorithm based and chance constrained 

programming based methods. In the chance constrained programming framework, a new 

mathematical model is developed to handle some uncertainties, with the objective of 

minimizing the equivalent annual cost as well as the security limits as chance constraints. Then, 

an approach for assessing the reliability of distribution systems containing DGs, capturing the 

inherent uncertainty, is presented. The work presented in this work is at its initial stage of our 

continuous development of new planning techniques for DGs, in which we believe the hybrid 

CCP approach is an appropriate technique and has more potential in dealing with various 

uncertainties appeared with introduction of DGs. Further development of the proposed method 
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is underway incorporating probabilistic indexes and additional realistic factor in DG planning, 

such as the transmission investment delay and emission reduction, into planning objective as 

well as more advanced reliability assessment. 

4. Risk control in transmission system planning with wind generators is systematically 

investigated. A probability model is employed to simulate the uncertainties associated with the 

power output of wind generators integrated into a power system. The probability distribution of 

the branching power flow is obtained by the combined use of cumulants and Gram-Charlier 

series. This analytical approach has the advantages of low computation cost, efficiency and 

flexibility. Two case studies demonstrate that it is possible to achieve a good trade-off among 

the security, reliability and economics of transmission system programming (TSP) schemes by 

employing risk-controlling strategies. Consequently, the security risks of a system associated 

with the uncertainties due to wind generators can be controlled using the developed TSP model. 

Some further research is demanded to build the integrated/equivalent wind generator model for 

a wind farm with numerous small wind generators so as to reduce the computational burden of 

the transmission planning problem. 

5. To address the generation scheduling problem with fluctuating wind power, a stochastic 

optimization approach is proposed for the unit commitment problem considering the 

uncertainty of wind power generation, based on the mixed-integer linear programming (MILP). 

The problem is formulated as minimizing the total cost of thermal units. A 10-unit system and 

100-unit system are employed for demonstrating the proposed model and method. It is shown 

by simulation results that the expected scheduling cost by using stochastic programming is 

generally more than that using the deterministic model. This is because the stochastic model 

took into account the situation that the thermal units cannot meet the prediction error in time 

caused by the variation of wind power. Hence, the ramping capabilities of units and prediction 

accuracy of wind power are crucial when wind power varies. For the unit commitment problem 

in large scale power systems with numerous wind units, the computational efficiency of the 

solving algorithm is still an issue to be further investigated. 
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APPENDIX A 

Table A1 Bus data of the 18-bus system 

Bus no 
Power of generator

（MW） 

power of load（

MW） 
Bus no 

Power of generator

（MW） 

power of load（

MW） 

1 0 550 10 7500 940 
2 3600 840 11 5400 7000 
3 0 1540 12 0 1900 
4 0 380 13 0 1100 
5 7600 6390 14 5400 320 
6 0 1990 15 0 2000 
7 0 2130 16 4950 1320 
8 0 880 17 0 4000 
9 0 2590 18 1420 0 

 

Table A2 Branch data of the 18-bus system 

Branch no Start bus no End bus no 
Reactance 

(p.u.） 

Rating power 

(MW） 
Original line 

number 
Length 

(km) 

1 1 2 0.0176 2300 1 70 
2 1 11 0.0102 2300 0 40 
3 2 3 0.0348 2300 1 138 
4 3 4 0.0404 2300 1 155 
5 3 7 0.0325 2300 1 129 
6 4 7 0.0501 2300 0 200 
7 4 16 0.0501 2300 0 200 
8 5 6 0.0267 2300 1 106 
9 5 11 0.0153 2300 0 60 
10 5 12 0.0102 2300 0 40 
11 6 7 0.0126 2300 1 50 
12 6 13 0.0126 2300 0 50 
13 6 14 0.0554 2300 0 220 
14 7 8 0.0151 2300 1 60 
15 7 9 0.0318 2300 0 126 
16 7 13 0.0126 2300 0 50 
17 7 15 0.0448 2300 0 178 
18 8 9 0.0102 2300 1 40 
19 9 10 0.0501 2300 1 200 
20 9 16 0.0501 2300 0 200 
21 10 18 0.0255 2300 0 100 
22 11 12 0.0126 2300 0 50 
23 11 13 0.0255 2300 0 100 
24 12 13 0.0153 2300 0 60 
25 14 15 0.0428 2300 0 170 
26 16 17 0.0153 2300 0 60 
27 17 18 0.014 2300 0 55 
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Fig A1 18-bus system 
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APPENDIX B 
 

Table B1 Bus data of the 46-bus system 

Bus no 

Power of 

generator（MW

） 

power of load（

MW） 
Bus no 

Power of 

generator（MW

） 

power of load

（MW） 

1 0 0 24 0 478.2 
2 0 443.1 25 0 0 
3 0 0 26 0 231.9 
4 0 300.7 27 54 0 
5 0 238 28 730 0 
6 0 0 29 0 0 
7 0 0 30 0 0 
8 0 72.2 31 310 0 
9 0 0 32 450 0 

10 0 0 33 0 229.1 
11 0 0 34 221 0 
12 0 511.9 35 0 216 
13 0 185.8 36 0 90.1 
14 944 0 37 212 0 
15 0 0 38 0 216 
16 1366 0 39 221 0 
17 1000 0 40 0 262.1 
18 0 0 41 0 0 
19 773 0 42 0 1607.9 
20 0 1091.2 43 0 0 
21 0 0 44 0 79.1 
22 0 81.9 45 0 86.7 
23 0 458.1 46 599 0 
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Table B2 Branch data of the 46-bus system 

Branch no 
Start bus 

no 
End bus no 

Reactance 

(p.u.） 

Rating 

power 

(MW） 

Original 

line 

number 

Cost 
 (10

3
 

dollar) 

1 1 7 0.0616 270 1 4349 
2 1 2 0.1065 270 2 7076 
3 4 9 0.0924 270 1 6217 
4 5 9 0.1173 270 1 7732 
5 5 8 0.1132 270 1 7480 
6 7 8 0.1023 270 1 6823 
7 4 5 0.0566 270 2 4046 
8 2 5 0.0324 270 2 2581 
9 8 13 0.1348 240 1 8793 
10 9 14 0.1756 220 2 11267 
11 12 14 0.074 270 2 5106 
12 14 18 0.1514 240 2 9803 
13 13 18 0.1805 220 1 11570 
14 13 20 0.1073 270 1 7126 
15 18 20 0.1997 200 1 12732 
16 19 21 0.0278 1500 1 32632 
17 16 17 0.0078 2000 1 10505 
18 17 19 0.0061 2000 1 8715 
19 14 26 0.1614 220 1 10409 
20 14 22 0.084 270 1 5712 
21 22 26 0.079 270 1 5409 
22 20 23 0.0932 270 2 6268 
23 23 24 0.0774 270 2 5308 
24 26 27 0.0832 270 2 5662 
25 24 34 0.1647 220 1 10611 
26 24 33 0.1448 240 1 9399 
27 33 34 0.1265 270 1 8288 
28 27 36 0.0915 270 1 6167 
29 27 38 0.208 200 2 13237 
30 36 37 0.1057 270 1 7025 
31 34 35 0.0491 270 2 3591 
32 35 38 0.198 200 1 12631 
33 37 39 0.0283 270 1 2329 
34 37 40 0.1281 270 1 8389 
35 37 42 0.2105 200 1 13388 
36 39 42 0.203 200 3 12934 
37 40 42 0.0932 270 1 6268 
38 38 42 0.0907 270 3 6116 
39 32 43 0.0309 1400 1 35957 
40 42 44 0.1206 270 1 7934 
41 44 45 0.1864 200 1 11924 
42 19 32 0.0195 1800 1 23423 
43 46 19 0.0222 1800 1 26365 
44 46 16 0.0203 1800 1 24319 
45 18 19 0.0125 600 1 8178 
46 20 21 0.0125 600 1 8178 
47 42 43 0.0125 600 1 8178 
48 2 4 0.0882 270 0 5965 
49 14 15 0.0374 270 0 2884 
50 46 10 0.0081 2000 0 10889 
51 4 11 0.2246 240 0 14247 
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52 5 11 0.0915 270 0 6167 
53 46 6 0.0128 2000 0 16005 
54 46 3 0.0203 1800 0 24319 
55 16 28 0.0222 1800 0 26365 
56 16 32 0.0311 1400 0 36213 
57 17 32 0.0232 1700 0 27516 
58 19 25 0.0325 1400 0 37748 
59 21 25 0.0174 2000 0 21121 
60 25 32 0.0319 1400 0 37109 
61 31 32 0.0046 2000 0 7052 
62 28 31 0.0053 2000 0 7819 
63 28 30 0.0058 2000 0 8331 
64 27 29 0.0998 270 0 6672 
65 26 29 0.0541 270 0 3894 
66 28 41 0.0339 1300 0 39283 
67 28 43 0.0406 1200 0 46701 
68 31 41 0.0278 1500 0 32632 
69 32 41 0.0309 1400 0 35957 
70 41 43 0.0139 2000 0 17284 
71 40 45 0.2205 180 0 13994 
72 15 16 0.0125 600 0 8178 
73 46 11 0.0125 600 0 8178 
74 24 25 0.0125 600 0 8178 
75 29 30 0.0125 600 0 8178 
76 40 41 0.0125 600 0 8178 
77 2 3 0.0125 600 0 8178 
78 5 6 0.0125 600 0 8178 
79 9 10 0.0125 600 0 8178 
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Fig B1 46-bus system 

 

 


